
Lecture Notes for Differential Equations

Sai-Mang Pun1

December 2022

1Department of Mathematics, Texas A&M University, College Station, TX, USA



2



Contents

1 Introduction 7

1.1 Some Basic Mathematical Models; Direction Fields . . . . . . . . . . . . . . . . . 7

1.2 Solutions of Some Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Classification of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Ordinary and Partial Differential Equations . . . . . . . . . . . . . . . . . 12

1.3.2 System of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Order of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 Linear and Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.5 Solutions of differential equations . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Additional Reading: Existence and Uniqueness of Differential Equations . . . . . 15

1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 First-Order Differential Equations 19

2.1 Linear Differential Equations; Method of Integrating Factors . . . . . . . . . . . 19

2.2 Separable Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Modeling with First-Order Differential Equations . . . . . . . . . . . . . . . . . . 27

2.4 Differences Between Linear and Nonlinear Differential Equations . . . . . . . . . 31

2.5 Autonomous Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Exact Differential Equations and Integrating Factors . . . . . . . . . . . . . . . . 40

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Suggested Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Second-Order Linear Differential Equations 49

3.1 Homogeneous Equations with Constant Coefficients . . . . . . . . . . . . . . . . . 49

3.2 Solutions of Linear Homogeneous Equations; the Wronskian . . . . . . . . . . . . 52

3.3 Complex Roots of the Characteristic Equation . . . . . . . . . . . . . . . . . . . 55

3.4 Repeated Roots; Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients . . . . . . . . 62

3.6 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Mechanical and Electrical Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 69

3



4 CONTENTS

3.8 Forced Periodic Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.10 Suggested Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Series Solutions of Second-Order Linear Equations 91

5.1 Review of Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Series Solutions Near an Ordinary Point: Part 1 . . . . . . . . . . . . . . . . . . 96

5.3 Series Solutions Near an Ordinary Point: Part 2 . . . . . . . . . . . . . . . . . . 100

5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 The Laplace Transform 105

6.1 Definition of the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Solution of Initial-Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Step Functions; Translation of functions . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Differential Equations with Discontinuous Forcing Functions . . . . . . . . . . . . 114

6.5 Impulse Functions; Dirac Delta Functions . . . . . . . . . . . . . . . . . . . . . . 116

6.6 The Convolution Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Systems of First-Order Linear Equations 129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Systems of Linear Algebraic Equations . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Basic Theory of Systems of First-Order Linear Equations . . . . . . . . . . . . . 142

7.5 Homogeneous Linear Systems with Constant Coefficients . . . . . . . . . . . . . . 143

7.6 Complex-Valued Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.7 Fundamental Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.8 Repeated Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.9 Nonhomogeneous Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Numerical Methods 167

8.1 The Euler or Tangent Line Method . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2 Improvements on the Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3 The Runge-Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9 Nonlinear Differential Equations and Stability 169

9.1 The Phase Plane: Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.2 Autonomous Systems and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 169



CONTENTS 5

9.3 Locally Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10 Partial Differential Equations and Fourier Series 171

10.1 Two-Point Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.3 The Fourier Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.4 Even and Odd Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.5 Separation of Variables; Heat Conduction in a Rod . . . . . . . . . . . . . . . . . 171

10.6 Other Heat Conduction Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.7 The Wave Equation: Vibrations of an Elastic String . . . . . . . . . . . . . . . . 171

10.8 Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

11 Boundary Value Problems and Sturm-Liouville Theory 173

11.1 The Occurrence of Two-Point Boundary Value Problems . . . . . . . . . . . . . . 173

11.2 Sturm-Liouville Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . 173

11.3 Nonhomogeneous Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . 173

11.4 Singular Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 173

11.5 Further Remarks on the Method of Separation of Variables: A Bessel Series
Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

11.6 Series of Orthogonal Functions: Mean Convergence . . . . . . . . . . . . . . . . . 173

11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A Python Lectures 175



6 CONTENTS



Chapter 1

Introduction

In this chapter, we provide a foundation for the study of differential equations. We introduce
some basic concepts frequently used in this course. We also introduce some mathematical models
that describes some physical processes by using differential equations.

1.1 Some Basic Mathematical Models; Direction Fields

Keywords: differential equations, mathematical models, direction fields

Many of the principles or laws underlying the behavior of the natural world are statements or
relations involving rates of change at which things happen. When expressed in mathematical
terms, the relations are equation and the rates of change are derivatives of some functions.
To describe these physical processes quantitatively, we have to deal with equations containing
derivatives of some unknown functions. These equations are called differential equations.

A differential equation that describes some physical process is often called a mathematical
model of the process. In this section, we begin with a simple model leading to equation that is
(relatively) easy to solve. Although our main goal is not the modeling part of physical process,
it is helpful to gain motivation for the study of some (linear or nonlinear) differential equations.

Example 1.1.1 (Falling Object). In this example, we are going to formulate a differential
equation that describes the motion of a falling object in the atmosphere near sea level. The
motion takes place during a certain time interval and we use the symbol t to denote time. We
use v to represent the velocity of the falling object. The velocity will presumably change with
time and we can think of v as a function of t.

The physical law that governs the motion of objects is Newton’s law, which states that the
mass of the object times its acceleration is equal to the net force on the object. In terms of
mathematics, this law is expressed by the equation

F “ ma “ m
dv

dt
, (1.1)

where m is the mass of the falling object, a “ dv{dt denotes its acceleration, and F is the net
force exerted on the object.

Next, we consider the forces that act on the object as it falls. We have gravity that exerts a
force to the object, whose magnitude is proportional to the weight of object, or mg, where g is
the acceleration due to gravity. In our case, we can treat as a known physical constant. On the
other hand, there is a force due to air resistance, or drag, that is more difficult to model. We
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8 CHAPTER 1. INTRODUCTION

assume that the magnitude of the drag force is proportional to the velocity of the object, or γv,
where γ is the drag coefficient. Again, we can treat γ here as a known constant depends on the
falling object itself.

In writing an expression for the net force F , since gravity always acts in downward direction,
whereas, for a falling object, drag acts in the upward direction. Thus, we can write

F “ mg ´ γv (1.2)

and the equation (1.1) becomes (since m ‰ 0)

m
dv

dt
“ mg ´ γv ùñ

dv

dt
“ g ´

γ

m
v. (1.3)

The differential equation (1.3) is a mathematical model for the velocity v of an object falling in
the atmosphere near sea level, where m, g, and γ are parameters in this model. By solving the
equation (1.3), we mean to find a function v “ vptq such that it satisfies the equation.

In the next section, we will show how to solve (1.3). For the present, we (qualitatively) analyze
the equation (1.3) and its solution without actually finding any of them. We introduce the
notion of direction field by continuing the example of falling object with concrete case.

Example 1.1.2 (Qualitative analysis of falling object problem). We continue to study the
differential equation (1.3) without solving it. To simplify our discussion, we assume that m “ 10,
g “ 9.8 and γ “ 2. Then, the equation (1.3) becomes

dv

dt
“ 9.8´

v

5
. (1.4)

In the equation above, t is the independent variable and v “ vptq is a dependent variable. Note
that the right-hand side fpv, tq :“ 9.8´ vptq{5 of the equation (1.4) depends on the values of v
and thus also on t. If we are given values of v and t, we can evaluate the function fpv, tq with
such given data. As a result, we can find the corresponding value of dv{dt.

For instance, if v “ 40, then dv{dt “ 9.8´ 40{5 “ 1.8. This means that the slope of a solution
curve v “ vptq has the value 1.8 at any point where v “ 40. We can display this information
graphically in the tv-plane by drawing short line segments with slope 1.8 at several points on
the line v “ 40. Proceeding in the same way with other values of v, we create a direction field
for the equation (1.4). A direction field for equation (1.4) is shown in Figure 1.1.

We know that a solution of equation (1.4) is a function v “ vptq, whose graph is a curve in the
tv-plane. The importance of the direction field is that each line segment is a tangent line to one
of these solution curves. Thus, even though we have not found any solutions, and no graphs of
solutions appear in the figure, we can nonetheless draw some qualitative conclusions about the
behavior of the solutions. For instance, if v is less than a certain critical value, say v ď 49 for
(1.4), then all the line segments have positive slopes, and the speed of the falling object increases
as it falls. On the other hand, if v is greater than 49, the line segments have negative slopes,
and the falling object slows down as it falls.

In fact, the constant function vptq “ 49 is a solution of (1.4). To verify this, substitute vptq “ 49
into equation and observe that each side of the equation is zero. Because it does not change
with time, the solution vptq “ 49 is called an equilibrium solution. It is the solution that
corresponds to a perfect balance between gravity and drag. To find out the equilibrium solution,
one may solve the zero(s) of the right-hand side, namely, we solve

9.8´
v

5
“ 0 ùñ v “ 49.
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Figure 1.1: The direction field for the differential equation v1ptq “ 9.8´vptq{5. Red line: v “ 49
where v1ptq “ 0.

In Figure 1.1, we show the equilibrium solution vptq “ 49 superimposed on the direction field.
From the figure we can draw another conclusion, namely, that all other solutions seem to be
converging to the equilibrium solution as t increase. Thus, in this context, the equilibrium
solution is often called the terminal velocity for the falling object.

In general, direction fields are valuable tools in studying the solutions of differential equations
of the form

dy

dt
“ fpt, yq, (1.5)

where fpt, yq is a given function of the two variables t and y, sometimes referred to as the rate
function. A direction field for equations of the form (1.5) can be drawn by evaluating f at each
point of a rectangular grid. At each point of the grid, a short line segment is drawn whose slope
is the value of f at that point. A direction field drawn on a fairly fine grid gives a good picture
of the overall behavior of solutions of a differential equation and the construction of a direction
field is often a useful first step in the investigation of a differential equation.

We summarize the content mentioned above:

• In constructing a direction field, we do not have to solve equation (1.5) and we just have
to evaluate the given rate function fpt, yq several times.

• Direction fields can be readily constructed even for equations quite difficult to solve.

• Drawing a direction field can be done by computer-aided procedure. For instance, one can
use a MATLAB built-in function quiver to visualize direction field of differential equation.

1.2 Solutions of Some Differential Equations

Keywords: general solution, integral curve, initial condition, initial-value problem

In the previous section, we derived a differential equation describes the velocity of a falling
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object with mass m as follows:
dv

dt
“ g ´

γ

m
v.

Once a differential equation is set up, we are not just only to analyze qualitatively by sketching
direction field, but also to focus on how to solve the equation.

In this section, we introduce a simple way to solve the following differential equation

dy

dt
“ ay ´ b, (1.6)

where a and b are given constants. We first look at the concrete setting of the problem of the
falling object.

Example 1.2.1. Let us consider a falling object with acceleration of gravity g “ 9.8, mass
m “ 10 and drag coefficient γ “ 2. The equation of motion becomes

dv

dt
“ 9.8´

v

5
“

49´ v

5
. (1.7)

Find solutions of this equation.

Solution. First, we rewrite (1.7) as follows:

dv{dt

v ´ 49
“ ´

1

5
.

Using the chain rule, the left-hand side of the above equation can be written as

dv{dt

v ´ 49
“

d

dt
rlog |vptq ´ 49|s “ ´1

5
.

Here, log denotes the natural logarithmic function with base e “ 2.7182818 ¨ ¨ ¨ . By integrating
both sides with respect to the variable t, we obtain

log |vptq ´ 49| “ ´ t
5
` C,

where C is an arbitrary constant of integration. Therefore, by taking the exponential of both
sides, we find that

|vptq ´ 49| “ exp

ˆ

´
t

5
` C

˙

“ eCe´t{5,

or we can write

vptq ´ 49 “ ˘eCe´t{5

for any arbitrary constant C. Since C is arbitrary, so is ˘eC and we denote c “ ˘eC . As a
result, we find that

vptq “ 49` ce´t{5 for any constant c. (1.8)

This formula is called the general solution of the differential equation (1.7). The geometric
representation of this general solution is an infinite family of curves called integral curves.
Each integral curve is associated with a particular value of c and is the graph of the solution
corresponding to that value of c. See Figure 1.2 for graphical illustration.
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Figure 1.2: The solution vptq “ 49` ce´t{5 with different values of c.

In Example 1.2.1, we found infinitely many solutions of the differential equation (1.7), corre-
sponding to the infinitely many values that the arbitrary constant c in the solution formula (1.8)
might have. This is typical of what happens when one solves a differential equation. The solu-
tion process involves an integration, which brings with it an arbitrary constant, whose possible
values generate a family of (infinitely many) solutions.

If we want to uniquely determine the value of c in the formula (1.7), we have to require an
additional condition for the function vptq. For example, if one assumes that the solution vptq
satisfies

vp0q “ 0, (1.9)

then using the solution formula, we have

vp0q “ 49` ce0 “ 49` c “ 0 ùñ c “ ´49.

Consequently, the solution vptq with vp0q “ 0 is

vptq “ 49p1´ e´t{5q.

The assumption (1.9) is an example of an initial condition. We call that the differential
equation (1.7) and the initial condition (1.9) forms an initial-value problem.

After we find the formula of the solution, we can further analyze the solution quantitatively. For
instance, we can find the time it will take to fall to the ground, and the terminal speed when it
hits the ground.

Example 1.2.2. We continue to study the falling object problem in Example 1.2.1. Suppose
that this object is dropped from a place of height h “ 300 with vp0q “ 0. How long will it take
to fall to the ground, and how fast will it be moving at the time of impact?

Solution. By previous results, the velocity function of the falling object with vp0q “ 0 is

vptq “ 49p1´ e´t{5q.

To find the velocity of the object when it hits the ground, we need to know the time at which
impact occurs. To do this, we note that the distance x the object has fallen is related to its
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velocity vptq by the differential equation

dx

dt
“ vptq “ 49p1´ e´t{5q.

Consequently, by integrating both sides with respect to t, we have

xptq “ 49t` 245e´t{5 ` k,

where k is an arbitrary constant of integration. The object starts to fall when t “ 0, so we know
that x “ 0 when t “ 0 since the object does not start to fall at the beginning. Then, we have

0 “ xp0q “ 245` k ùñ k “ ´245

and we have
xptq “ 49t` 245e´t{5 ´ 245.

Let T be the time at which the object hits the ground; then x “ 300 when t “ T . By substituting
these values in the formula above, we have

49T ` 245e´T {5 ´ 245 “ 300.

Solving the root of the above nonlinear system, we have T « 10.51. At this time, the corre-
sponding velocity vpT q is found from the formula and vpT q « 43.01.

1.3 Classification of Differential Equations

Keywords: ordinary/partial differential equations, systems of differential equations,
order of differential equations, linear/nonlinear differential equations, solutions of
differential equations

In this section, we introduce some terminologies that are used to describe differential equations.
Also, we introduce a framework of classifying differential equations. This helps us better un-
derstand and present the differential equations that we may encounter in this course and in the
real world.

1.3.1 Ordinary and Partial Differential Equations

The first classification of differential equations is based on whether the unknown function de-
pends on a single independent variable or on several independent variables. A differential equa-
tion is said to be an ordinary differential equation if the unknown function depends on a
single independent variable and only usual derivatives with respect to this single variable appear
in the differential equation. Examples of ordinary differential equation can be listed as follows:

• The equation
dv

dt
“ 9.8´

v

5
introduced in previous sections is an ordinary differential equation since there is only one
independent variable t and only the derivatives with respect to t appears.

• Let P ptq, Qptq, and fptq be given. The equation with the form

d2yptq

dt
` P ptq

dyptq

dt
`Qptqyptq “ fptq

is also an ordinary differential equation. Besides the first-order derivative, there is also
second-order derivative in the equation.
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If the unknown function depends on more than one variables and partial derivatives are involved
in the differential equation, then it is called a partial differential equation. Typical examples
of partial differential equations includes:

• the heat equation
B2upx, tq

Bx2
“
Bupx, tq

Bt
;

• the wave equation
B2upx, tq

Bx2
“
B2upx, tq

Bt2

since the unknown function upx, tq depends on two differential independent variables x
and t, and partial derivatives with respect to them appear in the differential equation.

In this course, we only focus on ordinary differential equations.

1.3.2 System of Differential Equations

One can classify differential equations depends on the number of unknown functions that are
involved. If there is a single function to be determined, then one differential equation is sufficient.
However, if there are more than one unknown functions, then a system of differential equations
is required. The number of unknown functions should be consistent with the number of the
equations in the system.

Example 1.3.1. The Lotka-Volterra equations are important in ecological modeling. They
have the form

dx

dt
“ ax´ αxy,

dy

dt
“ ´cy ` γxy,

where xptq and yptq are the unknown functions. Each of them depends on a single independent
variable t. Here, a, α, c, and γ are some empirical constants. This is a system of differential
equations with two unknown functions and two (differential) equations.

The theory of system of equations are discussed Chapters 7 and 9. In some areas of application,
it is not unusual to encounter very large systems containing hundreds, or even many thousands,
of differential equations.

1.3.3 Order of Differential Equations

Another classification of differential equations depends on the order of the highest derivatives
that appears in the equation. The highest order of derivation that appears in a differential
equation is called the order of the differential equation. For example, the following differential
equation

dy

dt
“ 9.8´

y

5

is a first-order (ordinary) differential equation (or the equation is of order 1); the equation below

d2yptq

dt
` P ptq

dyptq

dt
`Qptqyptq “ fptq
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is of second-order. More generally, the equation of the form

F
´

t, yptq, y1ptq, ¨ ¨ ¨ , ypnqptq
¯

“ 0 (1.10)

is an ordinary differential equation of order n. This expresses a relation between the independent
variable t and the values of the function yptq and its first n derivatives. Sometimes we write
y for yptq with ypnq standing for ypnqptq for any positive integer n. For example, the following
equation

y3 ` 2ety2 ` yy1 “ t4

is a third-order differential equation for the unknown function y “ yptq. Occasionally, other
symbols can be used instead of t and y for the independent and dependent variables; the meaning
should be clear from the context.

1.3.4 Linear and Nonlinear Equations

A crucial classification of differential equation is whether they are linear or nonlinear. A dif-
ferential equation is said to be linear if it is defined by a linear polynomial in the unknown
functions and its derivatives. That is, the general linear differential equation of order n is of the
form

a0ptqy
pnq ` a1ptqy

pn´1q ` ¨ ¨ ¨ ` anptqy “ gptq, (1.11)

where a0ptq, ¨ ¨ ¨ , anptq and gptq are arbitrary differentiable functions. A differential equation
that is not of the form (1.11) is called a nonlinear differential equation.

In most of the applications, the word linear generally means “simple” and nonlinear means
“complicated”. The theory for solving linear equations is very well developed because linear
equations are simple enough to be solvable. Nonlinear equations can usually not be solved
exactly and are the subject of much ongoing research. In our course, we focus on the theory of
solving linear differential equation. We will slightly discuss the qualitative theory of nonlinear
differential equation in Chapter 9.

Here are some examples of linear and nonlinear equations. We assume that the unknown function
is y “ yptq.

• The equation
y2 ` y “ 0

is a (second-order, ordinary) linear differential equation.

• The equation
2y1 ` ety “ cosptq

is a (first-order, ordinary) linear differential equation with n “ 2 in the general form of
linear differential equation (1.11) (a0ptq “ 2, a1ptq “ et, and gptq “ cosptq).

• The equation

y1 `
1

y
“ 0

is a (first-order, ordinary) nonlinear equation since the term 1{y is not one of the term in
(1.11).

• The equation

y2 `
g

L
sin y “ 0

describes the oscillation of a pendulum. It is a (second-order, ordinary) nonlinear equation
since the term pg{Lq sin y is not one of the term in (1.11).
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1.3.5 Solutions of differential equations

In this subsection, we give a formal definition of solutions of differential equations. We say that
the function φ “ φptq is a solution of the following n-th order ordinary equation

F pt, y, y1, ¨ ¨ ¨ , ypnqq “ 0

on the interval α ă t ă β if φ is continuous in the interval pα, βq and φ1, φ2, ¨ ¨ ¨ , φpnq exist and
satisfy the n-th order differential equation. That is,

F pt, φ, φ1, ¨ ¨ ¨ , φpnqq “ 0

for every t P pα, βq.

It is often not so easy to find solutions of differential equations. However, if you find a function
that you think may be a function of a given equation, it is usually relatively easy to determine
whether the function is actually a solution: just substitute the function into the equation.

Example 1.3.2. It is easy to show that the function y1ptq “ cos t is a solution of the following
second-order (ordinary) differential equation:

y2 ` y “ 0 (1.12)

for all t. To confirm this, observe that y11ptq “ ´ sin t and y21ptq “ ´ cos t; then it follows that
y21ptq` y1ptq “ 0 for all t. In the same way it is easy to verify that y2ptq “ sin t is also a solution
of (1.12).

1.4 Additional Reading: Existence and Uniqueness of Differen-
tial Equations

Keywords: existence/uniqueness of solutions

Although for the case of (1.12) we are able to verify that certain simple functions are solutions,
in general we do not have such solutions readily available. Thus, a fundamental question is the
following: Does a differential equation always have a solution? The answer is “No”. Merely
writing down a differential equation does not necessarily mean that there is a function that
satisfies it. This is the question of existence of a solution, and it is answered by theorems
stating that under certain conditions, the equation always has solutions. This is not a purely
theoretical concern for at least two reasons. If a problem has no solution, we would prefer
to know that fact before investing time and effort in a vain attempt to solve the problem.
Further, if a sensible physical problem is modeled mathematical as a differential equation, then
the equation should have a solution. If it does not, then presumably there is something wrong
with the formulation. In this sense an engineer or scientist has some check on the validity of the
mathematical model.

If we know already that a given differential equation has at least one solution, then we may
need to consider how many solutions it has, and what additional conditions must be specified
to single out a particular solution. This is the question of uniqueness. In general, solutions of
differential equations contain one or more arbitrary constant of integration. As in the question
of existence of solutions, the issue of uniqueness has practical as well as theoretical implications.
If we are fortunate enough to find a solution of a given problem, and if we know that the problem
has a unique solution, then we can be sure that we have completely solved the problem. If there
may be other solutions, then perhaps we should continue to search for them.
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After imposing these two issues, the third important question is: Given a differential equation,
can we actually determine a solution, and if so, how? Note that if we find a solution of the
given equation, we have at the same time answered the question of the existence of a solution.
However, without knowledge of existence theory we might, for example, use a computer to find
a numerical approximation to a “solution” that does not exist. On the other hand, even though
we may know that a solution exists, it may be hat the solution is not expressible in terms of the
usual elementary functions. Unfortunately, this is the situation for most differential equations.
Thus, we discuss both elementary methods that can be used to obtain exact solutions of certain
relatively simple problems, and also methods of a more general nature that can be used to find
approximations to solution of more difficult problems.
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1.5 Exercises

There are 4 questions in this assignment. Answer all. Please submit your homework on Grade-
scope. The deadline is 5:00 pm (CDT), Sep 9 2022.

1. (5 points) Consider the following differential equation with unknown function p “ pptq:

dp

dt
“
p

3
´ 50. (1.13)

(a) Sketch the direction field of (1.13) (by hand or any programming language).

(b) Find out the equilibrium solution of (1.13). Plot the equilibrium solution in the same
frame of the direction field.

(c) From the graph of the direction field plotted in (a), does a solution of (1.13) always
converge to the equilibrium solution found in (b)? Explain briefly.

2. (5 points) Consider the following differential equation with unknown function y “ yptq:

dy

dt
“ ay ´ b (1.14)

where a and b are two given constants and a ‰ 0.

(a) Using the technique in Example 1.2.1, find the general solution of the equation (1.14).

(b) If the unknown function y “ yptq satisfies the initial condition yp0q “ y0, where y0
is a given constant such that ay0 ´ b ‰ 0. Express the solution yptq in terms of a, b,
and y0.

(c) If a “ 0, what is the general solution of (1.14)?

3. (5 points) Determine the order of the given differential equations and also state whether
the equation is linear or nonlinear. Assume that the unknown function is y “ yptq.

(a) t2y2 ` ty1 ` 2y “ sin t.

(b) y2 ` sinpt` yq “ cos t.

(c) yp4q ` y3 ` y2 ` y1 ` y “ 1.

4. (5 points) For each differential equation stated below, determine the value(s) of r for which
the given differential equation has solutions of the form y “ ert.

(a) y1 ` 2y “ 0.

(b) y2 ` y1 ´ 6y “ 0.

(c) y3 ´ 3y2 ` 2y1 “ 0.
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Reference Solutions of Exercises in Chapter 1

1. The direction field is shown in the figure below. The equilibrium solution p “ 150 is
plotted in red. The solution may not converge to p “ 150 since it is unstable.

100 110 120 130 140 150 160 170 180 190 200

100

110

120

130

140

150

160

170

180

190

200

2. (a) One can solve by the method of separating variables. Assume that a ‰ 0. We have

dy

dt
“ ay ´ b

1

a

dy

y ´ b
a

“ dt

1

a
log

∣∣∣∣y ´ b

a

∣∣∣∣ “ t` C

log

∣∣∣∣y ´ b

a

∣∣∣∣ “ at` C∣∣∣∣y ´ b

a

∣∣∣∣ “ Ceat

yptq “
b

a
` Ceat

with C being arbitrary.

(b) Given initial condition yp0q “ y0, we find the value of C by plugging in t “ 0 and
y “ y0 in the above general solution and obtain

C `
b

a
“ y0 ùñ C “ y0 ´

b

a
.

The solution yptq becomes

yptq “
b

a
`

ˆ

y0 ´
b

a

˙

eat “ y0e
at `

b

a

`

1´ eat
˘

.

(c) If a “ 0, then the differential equation becomes y1 “ ´b and yptq “ ´bt ` C will be
the general solution.

3. (a) Second order; linear.

(b) Second order; nonlinear.

(c) Forth order; linear.

4. (a) pr ` 2qert “ 0 ùñ r “ ´2.

(b) pr2 ` r ´ 6qert “ 0 ùñ pr ` 3qpr ´ 2q “ 0 ùñ r “ ´3 or r “ 2.

(c) pr3 ´ 3r2 ` 2rqert “ 0 ùñ rpr2 ´ 3r ` 2q “ 0 ùñ rpr ´ 1qpr ´ 2q “ 0 ùñ r “ 0,
or r “ 1, or r “ 2.



Chapter 2

First-Order Differential Equations

This chapter deals with differential equation of first order:

dy

dt
“ fpt, yq (2.1)

where f is a given function of two variables and the unknown function is y “ yptq. The objective
is to determine whether a solution exists and if so, to develop methods for finding solutions.
For an arbitrary function f , there is no general method for solving the equation in terms of
elementary functions .Instead, we will describe several methods, each of which is applicable to
certain subclass of first-order equations.

The most important of these are linear equations (Section 2.1), separable equations (Section
2.2), and exact equations (Section 2.6). Other sections of this chapter describe some of the
important applications of first-order differential equations.

2.1 Linear Differential Equations; Method of Integrating Fac-
tors

Keywords: integrating factors, product rule, linear differential equations

If the function f in (2.1) depends linearly on the dependent variable y, then (2.1) is a first-order
linear differential equation. A typical example is

dy

dt
“ ´ay ` b

where a and b are given constants. Recall that an equation oft his form describes the motion of
an object falling in the atmosphere.

We consider a more general first-order linear differential equation in the standard form

dy

dt
` pptqy “ gptq, (2.2)

where pptq and gptq are given functions of the independent variable t. Sometimes it is more
convenient to write the equation in the form

P ptq
dy

dt
`Qptqy “ Gptq, (2.3)

where P ptq, Qptq, and Gptq are given such that P ptq ‰ 0 for some t. One can convert (2.3) to
(2.2) by dividing both sides of equation (2.3) by P ptq if P ptq ‰ 0 for some t.

19
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In some cases it is possible to solve a first-order linear differential equation immediately by
integrating the equation, as in the next example.

Example 2.1.1. Solve the differential equation

p4` t2q
dy

dt
` 2ty “ 4t. (2.4)

Solution. Note that using the product rule, we have

p4` t2q
dy

dt
` 2ty “

d

dt

`

p4` t2qy
˘

.

It follows that the equation (2.4) can be rewritten as

d

dt

`

p4` t2qy
˘

“ 4t.

Integrating both sides with respect to t, have

p4` t2qy “ 2t2 ` C

where C is an arbitrary constant of integration. Solving for y, we have

y “
2t2 ` C

4` t2

with C being arbitrary constant. This is the general solution of (2.4).

Most first-order linear differential equation cannot be solved as in Example 2.1.1 because their
left-hand sides are not the derivative of the product of y and some other function. However, if
the differential equation is multiplied by a certain function denoted by µptq, then the equation
is converted into one that is immediately integrable by using the product rule for derivatives
just as in Example 2.1.1. The function µptq is called an integrating factor and our task in
this section is to determine how to find it for a given equation. We show how this method works
first for a concrete example and then for the general case in the standard form (2.2).

Example 2.1.2. Find the general solution of the following differential equation

dy

dt
`

1

2
y “

1

2
et{3. (2.5)

Also, find the particular solution such that yp0q “ 1.

Solution. The first step is to multiply equation (2.5) by a function µptq (to be determined) such
that

µptq
dy

dt
`

1

2
µptqy “

d

dt
pµptqyq “ µptq

dy

dt
`
dµptq

dt
y. (2.6)

The second inequality comes from the product rule. If this is the case, then equation (2.5) can
be rewritten as

d

dt
pµptqyq “

1

2
µptqet{3

and it can be solved by integrating both sides of the equation above with respect to t. Thus,
from (2.6), the integrating factor µ should satisfy

dµptq

dt
“

1

2
µptq.



2.1. LINEAR DIFFERENTIAL EQUATIONS; METHOD OF INTEGRATING FACTORS21

Our search for an integrating factor will be successful if we can find µ such that it satisfies
the equation above. In fact, the function µptq given by µptq “ cet{2 (for any constant c) is an
integrating factor for equation (2.5). Since we do not need the most general integrating factor,
we can choose c “ 1 and use µptq “ et{2. Now we return to solve (2.5). We obtain

d

dt
pet{2yq “

1

2
et{2`t{3 “

1

2
e5t{6.

By integrating both sides with respect to t, we obtain

et{2y “
1

2
¨

6

5
e5t{6 ` c “

3

5
e5t{6 ` c

for any arbitrary constant c. Finally, dividing both sides by et{2 we have the general solution
for (2.5), namely,

yptq “
3

5
et{3 ` ce´t{2.

To find the solution satisfying yp0q “ 1, we let t “ 0 in the general solution and we have

1 “ yp0q “
3

5
` c ùñ c “

2

5
.

The desired solution is

yptq “
3

5
et{3 `

2

5
e´t{2.

Now we turn to the general first-order linear differential equation (2.2). To determine an ap-
proximate integrating factor, we multiply (2.2) by an to-be-determined function µptq, and we
obtain

µptq
dy

dt
` pptqµptqy “ µptqgptq. (2.7)

Following the same line of development as in Example 2.1.2, we see that the left-hand side of the
above equation is the derivative of the product µptqy, provided that µptq satisfies the following
condition:

dµptq

dt
“ pptqµptq.

If we assume that µptq is positive, then we have

1

µptq

dµptq

dt
“ pptq,

and consequently

log |µptq| “
ż

pptq dt` k

for any arbitrary constant k of integration. By choosing k “ 0, we obtain the simplest possible
integrating factor µ, namely,

µptq “ exp

ˆ
ż

pptq dt

˙

. (2.8)

Note that µptq is positive for all t, as we assumed. Returning to (2.7), we have

d

dt
pµptqyq “ µptqgptq,

ùñ µptqy “

ż

µptqgptq dt` C,
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where C is an arbitrary constant. Sometimes the integral in the above equation can be evaluated
in terms of elementary functions. However, in general this may not be possible, so the general
solution of (2.2) is

yptq “
1

µptq

ˆ
ż t

t0

µpsqgpsq ds` C

˙

, (2.9)

where again t0 is some convenient lower limit of integration. Observe that the general solution
involves two integrations, one to obtain µptq from (2.8) and the other to determine y from (2.9).

Example 2.1.3. Solve the initial-value problem

dy

dt
`

2

t
y “ 4t,

yp1q “ 2,
(2.10)

using the method of integrating factor.

Solution. First, we apply the method of integrating factor to find the solution of the linear
differential equation in (2.10). The differential equation is already in the standard form like
(2.2) with pptq “ 2{t and gptq “ 4t (if not, we have to convert the differential equation in
standard form before using the method of integrating factor).

We may choose the integrating factor as shown in (2.8). In this case, we have

µptq “ exp

ˆ
ż

pptq dt

˙

“ exp

ˆ
ż

2

t
dt

˙

“ expp2 log |t|q “ t2.

Then, we have
d

dt

`

t2y
˘

“ t2p4tq “ 4t3 ùñ t2y “

ż

4t3 dt` C “ t4 ` C

where C is an arbitrary constant of integration. The general solution of the differential equation
in (2.10) is

yptq “ t2 `
C

t2
, t ‰ 0

for any constant C. Note that for any constant C ‰ 0, the general solution becomes unbounded
and is asymptotic to the y-axis as t Ñ 0 from the right. This is the effect of the infinite
discontinuity in the coefficient pptq “ 2{t at the origin.

To determine the value of constant using the initial condition yp1q “ 2, we set t “ 1 and y “ 2
in the general solution and we have

2 “ yp1q “ 1`
C

1
“ 1` C ùñ C “ 1.

The solution is only valid when t ą 0 and we have to restrict the solution to the interval
0 ă t ă 8. It is important to note that while the function y “ t2 ` 1{t2 for t ă 0 is part of
the general solution of the differential equation, it is not part of the solution of this initial-value
problem. This is the first example in which the solution fails to exist for some values of t.

We remark that if the initial condition is yp1q “ 1, then C “ 0 and the solution is yptq “ t2,
which is bounded and differentiable even at t “ 0.

Example 2.1.4. Solve the initial-value problem

2y1 ` ty “ t, yp0q “ 2. (2.11)



2.2. SEPARABLE DIFFERENTIAL EQUATIONS 23

Solution. We can rewrite the equation as

y1ptq `
t

2
y “

t

2
.

The integrating factor in this case is

µptq “ exp

ˆ
ż

t

2
dt

˙

“ et
2{4.

Hence, the solution is

yptq “ e´t
2{4

ˆ
ż

t

2
et

2{4 dt` C

˙

“ Ce´t
2{4 ` 1.

Using the initial condition yp0q “ 2, we have C ` 1 “ 2 ùñ C “ 1. Hence, the solution is

yptq “ e´t
2{4 ` 1.

2.2 Separable Differential Equations

Keywords: separable equation, Chain Rule, first-order nonlinear, implicit function

In this section, we present a technique to solve a special class of first-order differential equations
using the process of direction integration. A large class of nonlinear differential equations falls
into the category of the so-called separable equations.

We consider a subclass of first-order equations that can be solved by direction integration:

dy

dt
“
Mpxq

Npyq
(2.12)

for some function Mpxq (depending only on x) and Npyq ‰ 0 (depending only on y). Of course,
we can rewrite the first-order differential equation (2.12) as follows:

Npyq
dy

dx
“Mpxq or ´Mpxq `Npyq

dy

dx
“ 0. (2.13)

Such an equation is said to be separable. A separable equation can be solved by integrating
the functions Mpxq and Npyq. We illustrate the process by an example and discuss it in general
for (2.13).

Example 2.2.1. Find an equation for its integral curves for the following separable equation

dy

dx
“

x2

1´ y2
(2.14)

Solution. We set Mpxq “ ´x2 and Npyq “ 1´ y2 in (2.14) and we can rewrite:

´x2 ` p1´ y2q
dy

dx
“ 0. (2.15)

Using the Chain Rule, if y is a function of x, we have

d

dx

ˆ

y ´
y3

3

˙

“ p1´ y2q
dy

dx
.
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Thus, the second term in (2.15) is the derivative of y´y3{3 with respect to x, and the first term
is the derivative of ´x3{3. Thus, we can rewrite (2.15) further as:

d

dx

ˆ

´
x3

3

˙

`
d

dx

ˆ

y ´
y3

3

˙

“ 0 ðñ
d

dx

ˆ

´
x3

3
` y ´

y3

3

˙

“ 0.

Therefore, by integrating both sides with respect to x, we have

´
x3

3
` y ´

y3

3
“ C (2.16)

for any constant C. The equation (2.16) is an equation for the integral curves of the differential
equation (2.14). Any differentiable function y “ φpxq that satisfies (2.16) is a solution of
(2.14).

Essential the same procedure in the previous example can be followed for any separable equation.
Returning to (2.13), let H1 and H2 be any antiderivatives of M and N , respectively. That is,
we have

dH1pxq

dx
“Mpxq and

dH2pyq

dy
“ Npyq,

and (2.13) becomes

´
dH1pxq

dx
`
dH2pyq

dy

dy

dx
“ 0.

If y is regarded as a function of x, then according to the Chain Rule, we have

dH2pyq

dy
¨
dy

dx
“

d

dx
H2pyq.

Consequently, we can write (2.13) as

d

dx
p´H1pxq `H2pyqq “ 0.

Integrating both sides with respect to x, we obtain

´H1pxq `H2pyq “ C or H2pyq “ H1pxq ` C (2.17)

where C is an arbitrary constant. Any differentiable function y “ φpxq that satisfies (2.17) is a
solution of (2.13). In other words, the formula (2.17) defines the solution implicitly rather than
explicitly. In practice, the separable equation can be solved in the following informal manner:
starting from the separable equation (2.12), we proceed

dy

dx
“
Mpxq

Npyq

ùñ Npyqdy “Mpxqdx pseparate the variables x and yq

ùñ

ż

Npyqdy “

ż

Mpxqdx pintegrate both sides with respect to x and y respectivelyq

ùñ H2pyq “ H1pxq ` C

where C is arbitrary constant from integration. This approach is (usually) called the method
of separating variables. The differential equation (2.13), together with an initial condition
ypx0q “ y0 forms an initial-value problem. To solve the initial-value problem, we determine the
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appropriate value for the constant C in (2.17). We do this by setting x “ x0 and y “ y0 in
(2.17) and noting that

H1pxq ´H1px0q “

ż x

x0

Mpsq ds, H2pyq ´H2py0q “

ż y

y0

Npsq ds,

we obtain
ż x

x0

Mpsq ds`

ż y

y0

Npsq ds “ 0. (2.18)

The equation above is an implicit representation of the solution of the equation (2.13) that also
satisfies the initial condition ypx0q “ y0. Bear in mind that to determine an explicit formula
for the solution, one needs to solve (2.18) for y as a function of x. Unfortunately, it is often
impossible to do this analytically; in such cases you can resort to numerical methods to find
approximate values of y for given values of x.

Example 2.2.2. Solve the initial-value problem

dy

dx
“

3x2 ` 4x` 2

2py ´ 1q
yp0q “ ´1, (2.19)

and determine the interval in which the solution exists.

Solution. The differential equation can be rewritten as

2py ´ 1qdy “ p3x2 ` 4x` 2qdx.

Integrating the left-hand side with respect to y and the right-hand side with respect to x gives

y2 ´ 2y “ x3 ` 2x2 ` 2x` C, (2.20)

where C is an arbitrary constant. To determine the solution satisfying the prescribed initial
condition, we substitute x “ 0 and y “ ´1 in (2.20) to obtain

p´1q2 ´ 2p´1q “ C ùñ C “ 3.

Hence, the solution of the initial-value problem is given implicitly by

y2 ´ 2y “ x3 ` 2x2 ` 2x “ 3. (2.21)

To obtain the solution explicitly, we have to solve (2.21) for y in terms of x. This is a simple
matter in this case, since (2.21) is quadratic in y, and we obtain

y “ 1˘
a

x3 ` 2x2 ` 2x` 4.

It gives two solutions of differential equation, only one of which, however, satisfies the given
initial condition. For instance, we define y1pxq such that

y1pxq “ 1`
a

x3 ` 2x2 ` 2x` 4 ùñ y1p0q “ 1`
?

4 “ 3 ‰ ´1,

where y1 does not satisfy the initial condition. On the other hand, the function y2pxq defined as

y2pxq “ 1´
a

x3 ` 2x2 ` 2x` 4 ùñ y2p0q “ 1´
?

4 “ ´1,
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satisfies the initial condition. So we finally obtain

y “ y2pxq “ 1´
a

x3 ` 2x2 ` 2x` 4 (2.22)

as the solution of (2.19). To determine the interval in which the solution (2.22) is valid, we find
the interval in which the quantity under the radical is positive. Notice that

x3 ` 2x2 ` 2x` 4 “ x2px` 2q ` 2px` 2q “ px` 2qpx2 ` 2q.

The only real zero of this expression is x “ ´2, so the desired interval is x ą ´2. We remark
that the interval of validity does not include the point x “ ´2 (even though yp´2q “ 1), since
the derivative y1 is not defined when x “ ´2 and y “ 1.

Example 2.2.3. Solve the initial-value problem

dy

dx
“

4x´ x3

4` y3
, yp0q “ 1 (2.23)

and determine its interval of validity.

Solution. Rewriting equation (2.23) as

p4` y3qdy “ p4x´ x3qdx,

integrating each side, we obtain

4y `
y4

4
“ 2x2 ´

x4

4
` C

for any arbitrary constant C. Multiplying by 4 and rearranging the terms, we obtain

y4 ` 16y ` x4 ´ 8x2 “ C

for any arbitrary constant C. Any differentiable function y “ φpxq that satisfies the equation
above is a solution of (2.23). To find the particular solution satisfying yp0q “ 1, we set x “ 0
and y “ 1 and it results in C “ 17. Thus, the solution in question is given implicitly by

y4 ` 16y ` x4 ´ 8x2 “ 17. (2.24)

The interval of validity of this solution extends on either side of the initial point px, yq “ p0, 1q
as long as the function remains differentiable. The interval ends when we reach points where
the tangent line is vertical. It follows from the differential equation (2.23) that these are points
where 4` y3 “ 0 or

y “ p´4q1{3 « ´1.5874.

From the solution formula (2.24), the corresponding values of x are x “ ˘3.3488. Hence, the
interval of validity is p´3.3488, 3.3488q (roughly).

Example 2.2.4. Solve the initial-value problem

dy

dx
“ 2y2 ` xy2, yp0q “ 1. (2.25)

Determine where the solution attains its minimum value.
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Figure 2.1: Integral curves for Example 2.2.3.

Solution. We rewrite the equation as follows:

dy

dx
“ y2px` 2q ùñ

dy

y2
“ px` 2qdx.

Integrating both sides, we obtain

´
1

y
“
x2

2
` 2x` C.

Using the initial condition yp0q “ 1, we obtain that

´1 “ 0` C ùñ C “ ´1.

The solution to the initial-value problem is

ypxq “

ˆ

´2x´
x2

2
` 1

˙´1

“ ´
2

x2 ` 4x´ 2
“ ´

2

px` 2q2 ´ 6
.

It is clear that the solution attains its minimum value at x “ ´2 with yp´2q “
1

3
.

2.3 Modeling with First-Order Differential Equations

Keywords: mathematical modeling, compound interest, escape velocity, SIR model

In this section, we present some examples of mathematical modeling with first-order (system
of) differential equations. The first example is related to compound interest and the second one
discusses the escape velocity. Finally, we briefly present a system of differential equations that
describes a basic compartmental model in epidemiology.

Example 2.3.1 (Compound interest). Suppose that a sum of money, S0, is deposited in a
bank or money fund that pays interest at an annual rate r. The value Sptq of the investment
at any time t depends on the frequency with which interest is compounded as well as on the
interest rate. Assume that compounding takes place continuously. We would like to set up an
initial-value problem that describes the growth of the investment.



28 CHAPTER 2. FIRST-ORDER DIFFERENTIAL EQUATIONS

The rate of change of the value of the investment is dS{dt, and this quantity is equal to the rate
at which interest accrues, which is the interest rate r times the current value of investment Sptq.
Thus, we have

dS

dt
“ rS. (2.26)

It is the differential equation that governs the process. Let t denote the times in years. Since
the initial value S0 is deposited, the corresponding initial condition is

Sp0q “ S0.

The solution of this initial-value problem gives the balance Sptq in the account at any time t.
This initial-value problem is readily solved, since the differential equation (2.26) is both linear
and separable. Consequently, we find that

Sptq “ S0e
rt.

Thus, a bank account with continuously compounding interest grows exponentially. The model
is easily extended to situations involving deposits or withdrawals in addition to the accrual of
interest, dividends, or annual capital gains. If we assume that the deposits or withdrawals take
place at a constant rate k, then (2.26) is replaced by

dS

dt
“ rS ` k or

dS

dt
´ rS “ k, (2.27)

where k is positive for deposit and negative for withdrawals. The equation is linear with in-
tegrating factor µptq “ e´rt, and thus we can solve (2.27) using method of integrating factors.
Thus, we can find out the general solution:

e´rt
dS

dt
´ e´rtrS “ ke´rt

d

dt

`

e´rtS
˘

“ ke´rt

e´rtS “ ´
k

r
e´rt ` C

ùñ Sptq “ Cert ´
k

r
.

If we consider the initial condition Sp0q “ S0, then we have

Sp0q “ C ´
k

r
“ S0 ùñ C “ S0 `

k

r
.

The solution is

Sptq “

ˆ

S0 `
k

r

˙

ert ´
k

r
“ S0e

rt `
k

r
pert ´ 1q. (2.28)

Example 2.3.2 (Escape velocity). A body of constant mass m is projected away from the earth
in a direction perpendicular to the earth’s surface with an initial velocity v0. Assuming that
there is no air resistance, but taking into account the variation of the earth’s gravitational field
with distance.

We would like to find an expression for the velocity during the ensuing motion. Also, we will
find the initial velocity that is required to lift the body to a given maximum altitude Amax above
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Figure 2.2: A body in the earth’s gravitational field is pulled towards the center of the earth.

the surface of the earth, and find the least initial velocity for which the body will not return to
the earth; the latter is the escape velocity.

Let the positive x-axis point away from the center of the earth along the line of motion with
x “ 0 lying on the earth’s surface. Denote R is the radius of the earth and g the acceleration
due to gravity. The differential equation that describes the velocity is

v
dv

dx
“ ´

gR2

pR` xq2
. (2.29)

The initial condition is vp0q “ v0. The equation (2.29) is separable but not linear. Integrating
both sides with respect to v and x respectively, we obtain

v2

2
“

gR2

R` x
` C

where C is an arbitrary constant. Making use of the initial condition, we have

v20
2
“ gR` C ùñ C “

v20
2
´ gR

and the solution becomes

v2

2
“

gR2

R` x
`
v20
2
´ gR ùñ v “ ˘

c

v20 ´ 2gR`
2gR2

R` x
. (2.30)

Note that equation (2.30) gives the velocity as a function of altitude rather than as a function
of time. The plus sign must be chosen if the body is rising, and the minus sign must be chosen
if it is falling back to earth. To determine the maximum altitude Amax that the body reaches,
we set v “ 0 and x “ Amax in (2.30) and then solve for Amax, obtaining

Amax “
v20R

2gR´ v20
.

Solving for v0, we find the initial velocity required to lift the body to the altitude Amax, namely

v0 “

c

2gR
Amax

R`Amax
.

The escape velocity ve is then found by letting Amax Ñ8. Consequently, we have

ve “
a

2gR.

We remark that the numerical value of ve is approximately 6.9 mi/s, or 11.1 km/s.

Example 2.3.3 (Compartmental model in epidemiology). The susceptible-infectious-recovered
(SIR) model is one of the simplest compartmental models. Many epidemiological models are
derivatives of this basic form of the SIR model. The model consists of three compartments:
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S: the number of susceptible individuals. When a susceptible and an infectious individual
come into infectious contact, the susceptible individual contracts the disease and transitions
to the infectious compartment.

I: the number of infectious individuals. These are individuals who have been infected and
are capable of infecting susceptible individuals.

R: the number of removed (and immune) or deceased individuals. These are individuals who
have been infected and have either recovered from the disease and entered the removed
compartment, or died. It is assumed that the number of deaths is negligible with respect
to the total population. This compartment may also be called recovered or resistant.

The variables S, I, and R represent the fractions of persons in each compartment at a particular
time. To represent that the number of susceptible, infectious and removed individuals may vary
over time (even if the total population size remains constant), we make the precise numbers a
function of t (time): Sptq, Iptq and Rptq. For a specific disease (e.g. COVID-19 or flu) in a
specific population, these functions may be worked out in order to predict possible outbreaks
and bring them under control.

Since Sptq, Iptq, and Rptq represent the susceptible, infected, and recovered/removed fractions
of persons involved in the infection at time t, so we have

Sptq ` Iptq `Rptq “ 1 (2.31)

for any time t, and because they are fractions, they must all reside within the interval r0, 1s. If
we denote aptq and µptq the semi-positive infection and recover rates, respectively, the SIR-model
is defined with the following first-order (nonlinear) system:

dS

dt
“ ´aptqSI,

dI

dt
“ aptqSI ´ µptqI,

dR

dt
“ µptqI.

(2.32)

So far we may not be able to find the solution of this SIR model analytically. We will conduct
some qualitative analysis to understand better this model. The second equation

dI

dt
“ aptqSI ´ µptqI,

describes the rate of change of the portion of people get infected by a specific disease at any time
t. For the time being, we assume that aptq “ a and µptq “ µ are just constant functions. If we
think about whether there is going to be a outbreak of pandemic, we investigate the equation
at the beginning, namely, we take t “ 0 and obtain

dI

dt

ˇ

ˇ

ˇ

ˇ

t“0

“ aSp0qIp0q ´ µIp0q.

Here, Sp0q and Ip0q denotes the initial fractions of people which are susceptible and infected,
respectively. We may assume that Ip0q ą 0 initially (if Ip0q “ 0 then there is no infected people
and no outbreak happens). If the rate of change is negative, that means the number of infected
people will not grow and

dI

dt

ˇ

ˇ

ˇ

ˇ

t“0

“ paSp0q ´ µq Ip0q ă 0 ðñ aSp0q ă µ ðñ
aSp0q

µ
ă 1.
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The ratio a{µ is called the basic reproduction number of the disease, and it represents the ability
of spreading of this disease. To prevent a pandemic, one can reduce the ratio by lowering the
transmission rate a (by quarantining infected people, washing your hands, wearing a face-mask,
maintaining social distancing, etc.) or the initial fraction Sp0q of susceptible individuals (by
implementing large-scale of vaccination). The recovered rate µptq is somehow hard to change
since it depends mainly on the disease we are facing.

2.4 Differences Between Linear and Nonlinear Differential Equa-
tions

Keywords: fundamental results for first-order DEs, existence, uniqueness

So far we have discussed a number of initial-value problems, each of which had a solution and
apparently only one solution. That raises the question of whether this is true of all initial-value
problems for first-order equations. For linear equations, the answers to these questions are given
by the following fundamental results.

Theorem 2.4.1 (Existence and Uniqueness for First-Order Linear Equations). Consider the
linear first-order differential equation with initial condition:

dy

dt
` pptqy “ gptq, ypt0q “ y0. (2.33)

If the functions p and g are continuous on an open interval I : α ă t ă β containing the point
t “ t0, then there exists a unique solution y “ φptq that satisfies the differential equation for
each t in the interval I and that also satisfies the initial condition.

Theorem 2.4.1 states that the given initial-value problem has a solution and also that the problem
has only one solution. In addition, it states that the solution exists throughout any interval I
containing the initial point t “ t0 in which the functions p and g are continuous. That is, the
solution can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous.

Recall in Section 2.1, we have derived that the equation (2.33) has a solution of the form

yptq “
1

µptq

ˆ
ż

µpsqgpsq ds` C

˙

where C is a constant determined by the initial condition and

µptq “ exp

ˆ
ż

pptq dt

˙

.

Since the function p is continuous for α ă t ă β, the function µ is defined and it is differentiable
and µ ‰ 0.

Turning now to nonlinear differential equations, we replace Theorem 2.4.1 by a more general
result, such as the one that follows.

Theorem 2.4.2 (Existence and Uniqueness for First-Order Non-Linear Equations). Consider
the nonlinear first-order differential equation with initial condition:

dy

dt
“ fpt, yq (2.34)

If the functions f and Bf{By are continuous on some rectangle α ă t ă β, γ ă y ă δ containing
the point pt, yq “ pt0, y0q, then in some interval t0´h ă t ă t0`h contained in α ă t ă β, there
exists a unique solution y “ φptq that satisfies the initial-value problem (2.34).
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Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if the differential
equation is linear. In this case, we have

fpt, yq “ ´pptqy ` gptq and
Bfpt, yq

By
“ ´pptq.

Hence, the continuity of f and Bf{By is equivalent to the continuity of p and g. Note that the
conditions stated in Theorem 2.4.2 are sufficient to guarantee the existence of a unique solution
of the initial-value problem (2.34) in some interval pt0 ´ h, t0 ` hq, but they are not necessary.
That is, the conclusion remains true under slightly weaker hypotheses about the function f . In
fact, the existence of a solution (but not its uniqueness) can be established on the basis of the
continuity of f alone.

An important geometrical consequence of the uniqueness parts of Theorems 2.4.1 and 2.4.2 is
that the graphs of two solution curves cannot intersect each other. Otherwise, there would
be two solutions that satisfy the initial condition corresponding to the point of intersection, in
contradiction to Theorem 2.4.1 or 2.4.2. We now consider some examples.

Example 2.4.3. Use Theorem 2.4.1 to find an interval in which the initial-value problem

t
dy

dt
` 2y “ 4t2,

yp1q “ 2,
(2.35)

has a unique solution. Do the same when the initial condition is changed to yp´1q “ 2.

Solution. Rewriting (2.35) in the standard form, we have

dy

dt
`

2

t
y “ 4t,

and we can set pptq “ 2{t and gptq “ 4t. Thus, for this equation, g is continuous for all t, while
p is continuous only for t ă 0 or for t ą 0. The interval t ą 0 contains the initial point t “ 1;
consequently, Theorem 2.4.1 guarantees that the problem (2.35) has a unique solution on the
interval 0 ă t ă 8. The solution of this initial-value problem is

yptq “ t2 `
1

t2
for any t ą 0.

Now suppose that the initial condition is changed to be yp´1q “ 2. Then, Theorem 2.4.1 asserts
the existence of a unique solution for t ă 0. As you can readily verify, the solution is again given
by

yptq “ t2 `
1

t2

but now on the interval t ă 0.

Example 2.4.4. Apply Theorem 2.4.2 to the initial-value problem

dy

dt
“

3t2 ` 4t` 2

2py ´ 1q
,

yp0q “ ´1.

(2.36)

Repeat this analysis when the initial condition is changed to yp0q “ 1.
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Solution. One has to apply Theorem 2.4.2 since the differential equation is nonlinear. Observe
that

fpt, yq “
3t2 ` 4t` 2

2py ´ 1q
and

Bf

By
pt, yq “ ´

3t2 ` 4t` 2

2py ´ 1q2
.

Thus, each of these functions is continuous everywhere except on the line y “ 1. Consequently,
a rectangle can be drawn about the initial point pt, yq “ p0,´1q in which both f and Bf{By
are continuous. Therefore, Theorem 2.4.2 guarantees that the initial-value problem (2.36) has
a unique solution in some interval about t “ 0. However, even though the rectangle can be
stretched infinitely far in both the positive and the negative t directions, this does not necessarily
mean that the solution exists for all t. Indeed, this problem is solved in Example 2.2.2, and the
solution exists only for t ą ´2.

Now suppose we change the initial condition to yp0q “ 1. The initial point now lies on the
line y “ 1, so no rectangle can be drawn about it with which f and Bf{By are continuous.
Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified problem.
However, if we separate the variables and integrate, as in Example 2.2.2, we find that

y2 ´ 2y “ t3 ` 2t2 ` 2t` c

for any constant c. Further, if t “ 0 and y “ 1, then we obtain that

c “ y2 ´ 2y ´ t3 ´ 2t2 ´ 2t “ ´1.

Finally, by solving for y, we obtain

y “ 1˘
a

t3 ` 2t2 ` 2t “ 1˘
a

tpt2 ` 2t` 2q “ 1˘
a

t rpt` 1q2 ` 1s. (2.37)

The equation (2.37) provides two functions that satisfy the given differential equation in (2.36)
for t ą 0 and also satisfy the initial condition yp0q “ 1. The fact that there are two solutions
to this initial value problem reinforces the conclusion that Theorem 2.4.2 does not apply to this
initial-value problem.

According to Theorem 2.4.1, the solution of the initial-value problem

dy

dt
` pptqy “ gptq, ypt0q “ y0

exists throughout any interval about t “ t0 in which the functions p and g are continuous.
Thus, vertical asymptotes or other discontinuities in the solution can occur only at points of
discontinuity of p or g.

On the other hand, for a nonlinear initial-value problem satisfying hypotheses of Theorem 2.4.2,
the interval in which a solution exists may be difficult to determine. The solution y “ φptq is
certain to exist as long as the point pt, φptqq remains within a region in which the hypotheses of
Theorem 2.4.2 are satisfied. This is what determines the value of h in that theorem. However,
since φptq is usually not known, it may be impossible to locate the point pt, φptqq with respect
to this region. In any case, the interval in which a solution exists may have no simple relation
to the function f in the differential equation y1 “ fpt, yq. This is illustrated by the following
example.

Example 2.4.5. Solve the (nonlinear) initial-value problem

dy

dt
“ y2, yp0q “ 1, (2.38)

and determine the interval in which the solution exists.
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Solution. Theorem 2.4.2 guarantees that this problem has a unique solution since fpt, yq “ y2

and Bf{By “ 2y are continuous everywhere. To find the solution, we separate the variables and
integrate with the result that

dy

y2
“ dt ùñ ´

1

y
“ t` c.

Then, solving for y, we have

y “ ´
1

t` c
.

To satisfy the initial condition, the constant c satisfies

1 “ yp0q “ ´
1

c
ùñ c “ ´1 ùñ y “

1

1´ t
. (2.39)

Clearly, the solution becomes unbounded as t Ñ 1; as a result, the solution exists only in the
interval ´8 ă t ă 1. There is no indication from the differential equation itself, however that
the point t “ 1 is in any way remarkable. Moreover, if the initial condition is replaced by
yp0q “ y0 for some given constant y0, then the the solution of the initial-value problem is

yptq “
y0

1´ y0t
. (2.40)

The solution (2.40) becomes unbounded as tÑ 1{y0, so the interval of existence of the solution
is ´8 ă t ă 1{y0 if y0 ą 0, and is 1{y0 ă t ă 8 if y0 ă 0. This example illustrates another
feature of initial-value problems for nonlinear equations: the singularities of the solution may
depend in an essential way on the initial conditions as well as on the differential equation.

To summarize, the linear differential equation

dy

dt
` pptqy “ gptq

has the following nice properties:

• Assuming that the coefficients are continuous, there is a general solution containing an
arbitrary constant. A particular solution that satisfies a given initial condition can be
picked out by choosing the proper value of the arbitrary constant.

• There is an expression for the solution. Also, the expression of the solution is an explicit
one for the solution y “ φptq.

• The possible points of discontinuity, or singularities, of the solution can be identified (with-
out solving the problem) merely by finding the points of discontinuity of the coefficients.
Thus, if the coefficients are continuous for all t, then the solution also exists and is differ-
entiable for all t.

None of these statements are true, in general, of nonlinear equations. Although a nonlinear
equation may well have a solution involving an arbitrary constant, there may also be other
solutions. There is no general formula for solutions of nonlinear equations. The expression
might be implicit. Finally, the singularities of solutions of nonlinear equations can usually be
found only by solving the equation and examining the solution. It is likely that the singularities
will depend on the initial condition and on the differential equation.



2.5. AUTONOMOUS DIFFERENTIAL EQUATIONS 35

2.5 Autonomous Differential Equations

Keywords: autonomous, equilibrium, stability, phase line, graphical analysis

In this section, we introduce and consider an important class of first-order equations of the
following form:

dy

dt
“ fpyq. (2.41)

Such equations are called autonomous in which the independent variable t does not appear
explicitly. For instance, the equation

dv

dt
“ 9.8´

v

5

that we considered in Chapter 1 is an autonomous equation although v “ vptq is still a function
of t, and t does not appear on the right-hand side of the above equation. We treat v as a single
variable.

Note that the equation (2.41) is separable, so the discussion in Section 2.2 is applicable to it. The
main purpose of this section is to show how geometric methods can be used to obtain important
qualitative information directly form the differential equation without solving it. Of fundamental
importance in this effort are the concept of equilibrium of the underlying differential equation
and its stability.

We first introduce the concept of equilibrium solution of the autonomous differential equation
(2.41) with given right-hand side fpyq. Suppose that the constant function yptq “ c (here c is any
given number) such that fpyq “ 0, then this constant function yptq “ c is called an equilibrium
solution (or simply an equilibrium) of (2.41). Note that for equilibrium solution y “ c, it must
have y1ptq ” 0.

We now present some examples to demonstrate what kind of information can be obtained by
performing some graphical analysis related to the so-called phase diagram and phase line.

Example 2.5.1. Consider the equation y1 “ 9.8 ´ 0.2y. It is an autonomous equation. By
solving the equation (finding the value of y as a single variable), we get

9.8´ 0.2y “ 0 ðñ y “ 49.

Hence, y “ yptq “ 49, which is a constant function, is an equilibrium to this differential equation.
In fact, once we obtain the equilibrium, we can draw a so-called phase diagram and the phase
line (i.e. the line y “ 49). It is another way to visualize the differential equation (similar to
direction field, but slightly different).

Figure 2.3 demonstrates a phase diagram and the (horizontal) line y “ 49, indicating the equi-
librium y “ 49, is a phase line. Graphically speaking, the phase line splits the yt-plane into two
regions: the region where y ą 49 and the one y ă 49. We take a closer talk at these two cases:

1. We examine the case where y ą 49 (upper region above the phase line). For instance, we
take an initial condition, say yp0q “ 60 and accompany it with the differential equation.
The solution to this IVP is yptq “ 49`11e´t{5 and the red curve in Figure 2.3 is the solution
curve to this IVP. Note that the derivative y1 can be computed by the DE y1 “ 9.8´ 0.2y.
In this region, since y is always bigger than 49, it implies that the derivative is always
negative (i.e. y1 ă 0). That means, the function value of y is decreasing and it approaches
to the equilibrium y “ 49 as tÑ8 (as shown in Figure 2.3). We draw an arrow pointing
downward in this region to indicate y is decreasing in this region.
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38

49

60

Figure 2.3: The phase diagram and phase line y “ 49 in Example 2.5.1; red curve: yptq “
49` 11e´t{5 with yp0q “ 60; blue curve: yptq “ 49´ 11e´t{5 with yp0q “ 38.

2. The another case where y ă 49 (lower region below the phase line) can be analyzed in a
similar manner. For instance, we take an initial condition yp0q “ 38 and accompany it
with the differential equation. The solution to this IVP is yptq “ 49´11e´t{5 and the green
curve in Figure 2.3 is the corresponding solution curve. Since y ă 49, it implies that y1 ą 0
and the function values of y is increasing and it approaches to the equilibrium y “ 49 as
t Ñ 8. We draw an arrow pointing upward in this region to indicate y is increasing in
this region.

To summarize, with only the DE y1 “ 9.8´0.2y, we can find its equilibrium solution y “ 49 and
this equilibrium y “ 49 can be viewed as the solution to the IVP with initial condition yp0q “ 49.
When we consider the same DE but with different initial conditions (say yp0q “ 60 or yp0q “ 38
in the previous cases), the solutions to the IVPs for both cases approach the equilibrium y “ 49
as tÑ8. Graphically speaking, one arrow pointing downward and one upward (like squeezing
sandwich, where those arrows are bread, and the phase line is ingredient) can be observed. In
this case, we say that the equilibrium y “ 49 is stable.

We can further interpret the meaning of being stable for an equilibrium. When the equilibrium
is stable, if we pick an initial condition that is close to the equilibrium (but not exactly), then
the solution starting from that picked initial condition approaches to this stable equilibrium as
tÑ8.

Example 2.5.2. Consider the differential equations y1 “ p1 ´ yqp3 ´ yq. Solving the equation
p1´ yqp3´ yq “ 0 gets y “ 1 or y “ 3. Hence, this equation has two equilibriums. Accordingly,
we can draw two phase lines y “ 1 and y “ 3 on the phase diagram. These two lines split the
plane into three different regions: y ă 1; 1 ă y ă 3; and y ą 3.

1. When y ă 1: the derivative y1 “ p1´ yqp3´ yq ą 0; thus the value of y is increasing. One
can draw an arrow pointing upward to the phase line y “ 1.

2. When 1 ă y ă 3: the derivative y1 “ p1´ yqp3´ yq ă 0 (as 1´ y ă 0 and 3´ y ą 0, their
product is negative); thus the value of y is always decreasing. One draws an arrow pointing
down to the phase line y “ 1 and draws another arrow pointing down near another phase
line y “ 3.
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1

3

Figure 2.4: The phase diagram and phase lines y “ 1 and y “ 3 in Example 2.5.2. The
equilibrium y “ 1 is stable (like squeezing sandwich) while y “ 3 is unstable (like bread goes
away).

3. Similarly, when y ą 3, the derivative is positive; thus the value of y is increasing and we
draws an arrow pointing upward near above the phase line y “ 3.

From the phase diagram Figure 2.4, we can see that the equilibrium y “ 1 is stable. That means
if we pick an initial condition that is close to the value of 1 (but not exceed 3 in this example),
then our solution starting from this initial condition always approaches to 1 as tÑ 8. On the
other hand, y “ 3 is called unstable since no matter where we start our solution around the
value of y “ 3, the solution with this starting point always goes away from y “ 3. Graphically
speaking, one arrow on top pointing upward but another arrow below pointing downward (like
bread goes away) can be observed in the unstable case.

To summarize, we classify the equilibrium solutions as follows. Suppose that yptq “ c is an
equilibrium solution of the autonomous differential equation (2.41). Then, we call yptq “ c is:

• Stable: if all solutions of (2.41) with initial conditions y0, which is near y “ c, approach
c as tÑ8 (like squeezing sandwich).

• Unstable: if all solutions with initial conditions y0, which is near y “ c, do not approach
c as tÑ8 (bread goes away).

• Semi-stable: if solutions yptq with initial conditions y0 on one side of c approach c as
tÑ 8, while solutions with initial conditions y0 on the other side of c do not approach c
as tÑ8 (the case between stable and unstable).

Remark: Using the fundamental results of first-order differential equations in 2.4, if fpyq and
Bf{By are continuous, then equation (2.41) has one and only one solution. That means any
solution curve of the differential equation (2.41) cannot intersect the one that of the equilibrium
solution.

We summarize a step-by-step procedure for performing graphical analysis in terms of equilibri-
ums of DEs. Given an autonomous equation

dy

dt
“ fpyq
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with fpyq and Bf{By being continuous, we follow the steps below to classify equilibrium solutions:

1. Solve fpyq “ 0 to find out all equilibrium solution(s).

2. For each equilibrium, study the values of fpyq around the equilibrium solution(s). Draw
a line (phase line) that represents the values of y and make tick marks at equilibrium
values.

3. Between tick marks determine if fpyq is positive or negative.

• If fpyq is positive, then dy{dt is positive so any solution y in this region is increasing.

• If fpyq is negative, then dy{dt is negative so any solution y in this region is decreasing.

4. Classify the equilibriums:

• If increasing below and decreasing above ùñ stable.

• If decreasing below and increasing above ùñ unstable.

• If decreasing below and above OR increasing below and above ùñ semi-stable.

Example 2.5.3. Find and classify the equilibrium point(s) of

dy

dt
“ ´py ´ 10q2py ´ 4q.

Solution. The equilibrium points are y “ 4 and y “ 10.

• For y ą 10, dy{dt is negative, so yptq is decreasing.

• For 4 ă y ă 10, dy{dt is negative, so yptq is decreasing.

• For y ă 4, dy{dt is positive, so yptq is increasing.

As a result, yptq “ 4 is stable and yptq “ 10 is semi-stable.

Example 2.5.4. Find and classify the equilibrium point(s) of

dy

dt
“ py3 ´ 8qpey ´ 1q.

Solution. The equilibrium points are y “ 2 and y “ 0.

• For y ą 2, dy{dt is positive, so yptq is increasing.

• For 0 ă y ă 2, dy{dt is negative, so yptq is decreasing.

• For y ă 0, dy{dt is positive, so yptq is increasing.

As a result, yptq “ 0 is stable and yptq “ 2 is unstable.

Example 2.5.5 (Exponential growth). We consider the problem of population growth of a given
species at specific time interval. Let y “ φptq be the population of the given species at time t.
The simplest hypothesis concerning the variation of population is that the rate of change of y
is proportional to the current value of y; that is,

dy

dt
“ ry, (2.42)



2.5. AUTONOMOUS DIFFERENTIAL EQUATIONS 39

where the constant r is called the rate of growth or decline, depending on the sign of r. Here,
we assume that the population is growing and thus r ą 0. Solving (2.42) subject to the initial
condition yp0q “ y0 we obtain

yptq “ y0e
rt. (2.43)

Thus, the mathematical model consisting of the initial-value problem with r ą 0 predicts that
the population will grow exponentially for all times. Under ideal conditions, the solution (2.43)
has been observed to be reasonably accurate for many populations, at least for limited periods
of time. However, it is clear that such ideal conditions cannot continue indefinitely; eventually,
limitations on space, food supply, or other resources will reduce the growth rate and bring an
end to uninhibited exponential growth.

Example 2.5.6 (logistic growth). To take account of the fact that the growth rate actually
depends on the population, we consider

dy

dt
“ r

´

1´
y

K

¯

y. (2.44)

The equation (2.44) is known as the logistic equation. The constant r is called the intrinsic
growth rate.

We now perform the so-called graphical analysis to give a sketch of the solution to (2.44).
The same methods also apply to the more general equation (2.41).

We first seek equilibrium solutions of (2.44). Thus, the equilibrium solutions are y “ 0 and
y “ K. The graph of fpyq is a parabola shown in Figure 2.5. The intercepts are p0, 0q and
pK, 0q, corresponding to the equilibrium solutions of (2.44), and the vertex of the parabola is
pK{2, rK{4q.

Figure 2.5: The function fpyq “ rp1´ y{Kqy versus y for logistic model.

For the logistic equation (2.44), one can observe that

• The equilibrium solutions of (2.44) are y “ 0 and y “ K.

• The function fpyq “ rp1´ y{Kqy achieves maximum fpy˚q “ rK{4 when y˚ “ K{2.

• If 0 ă y ă K, then dy{dt ą 0; thus the solution is increasing; if y ą K, then dy{dt ă 0;
thus the solution is decreasing.

• Hence, y “ 0 is unstable and y “ K is stable.
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The dots at y “ 0 and y “ K are the critical points, or equilibrium solutions. The arrows again
indicate that y is increasing whenever 0 ă y ă K and that y is decreasing whenever y ą K.
Further from Figure 2.5, note that if y is near zero or K, then the slope fpyq is near zero, so the
solution curves are relatively flat. They become steeper as the value of y leaves the neighborhood
of zero or K.

To carry out further investigation of the solution of (2.44), one can determine the concavity of
the solution curves and the location of inflection points by finding the second order derivative
d2y{dt2. To do this, we apply the chain rule:

d2y

dt2
“

d

dt

dy

dt
“

d

dt
fpyq “ f 1pyq

dy

dt
“ f 1pyqfpyq. (2.45)

The signs of f and f 1 can be easily identified from the graph of fpyq versus y. We note that

• The solution curves is concave up when y2 ą 0; that is, f and f 1 has the same sign.

• The solution curves is concave down when y2 ă 0; that is, f and f 1 has the opposite signs.

• Inflection point(s) may occur when f 1pyq “ 0.

If we consider the logistic model (2.44) and we recall fpyq “ rp1´ y{Kqy, then we have

f 1pyq “ r

ˆ

1´
2y

K

˙

.

The inflection point is y “ K{2. Hence, solutions are concave up when 0 ă y ă K{2 where f
is positive and increasing, so that both f and f 1 are positive. Solutions are also concave up for
y ą K where f is negative and decreasing (both f and f 1 are negative). For K{2 ă y ă K,
solutions are concave down since here f is positive and decreasing, so f is positive but f 1 is
negative.

We recall that y “ 0 and y “ K are two equilibrium solutions of the logistic model (2.44).
The uniqueness part of Theorem 2.4.2 states that only one solution can pass through a givne
point in the ty-plane. Thus, other solutions may be asymptotic to the equilibrium solution(s)
as tÑ8, they cannot intersect it at any finite time. Consequently, a solution that starts in the
interval 0 ă y ă K remains in this interval for all time, and similarly for a solution that starts
in K ă y ă 8.

If a solution y “ yptq starts in the interval y ą K, then K is the lower bound of the solution
of the logistic model. While if a solution starts in the interval 0 ă y ă K, then K is the upper
bound that is approached but not exceeded. Thus it is natural to refer K as the saturation
level or the environmental carrying capacity for the given species.

2.6 Exact Differential Equations and Integrating Factors

Keywords: exact differential equations, implicit function

We first look at an example below.

Example 2.6.1. Solve the differential equation

2x` y2 ` 2xy
dy

dx
“ 0. (2.46)
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Solution. The equation is neither linear nor separable, so the methods suitable for those types
of equations are not applicable here. However, observe that the function ψpx, yq “ x2` xy2 has
the property that

Bψ

Bx
“ 2x` y2,

Bψ

By
“ 2xy.

Therefore, the differential equation (2.46) becomes

Bψ

Bx
`
Bψ

By

dy

dx
“ 0.

Assuming that y is a function of x, we use the chain rule to write the left-hand side of the
equation above as dψpx, yq{dx. Then, the equation becomes

dψ

dx
px, yq “

d

dx
px2 ` xy2q “ 0.

Integrating with respect to x, we obtain

x2 ` xy2 “ C (2.47)

for any arbitrary constant C. The level curves of x2 ` xy2 “ C for different values of C are the
integral curves of equation (2.46) and solutions of (2.46) are defined implicitly by (2.47).

In general, we consider the following differential equation

Mpx, yq `Npx, yq
dy

dx
“ 0. (2.48)

Suppose that we can identify a function ψpx, yq such that

Bψ

Bx
px, yq “Mpx, yq,

Bψ

By
px, yq “ Npx, yq,

and such that ψpx, yq “ c defines y “ φpxq implicitly as a differentiable function of x. When
there is a function ψpx, yq such that ψx “M and ψy “ N , we can write

Mpx, yq `Npx, yq
dy

dx
“
Bψ

Bx
`
Bψ

By

dy

dx
“

d

dx
pψpx, yqq

and the differential equation (2.48) becomes

d

dx
pψpx, yqq “ 0. (2.49)

In this case (2.49) is called an exact differential equation because it can be expressed exactly
as the derivative of a specific function. Solutions of (2.48) or the equivalent form (2.49) are
given implicitly by

ψpx, yq “ C

where C is an arbitrary constant.

Remark: A differential equation (2.48) is exact if and only if the functions Mpx, yq and Npx, yq
satisfies

Mypx, yq “ Nxpx, yq.

In this case, there exists a function ψ such that ψx “M and ψy “ N .
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Example 2.6.2. Solve the following differential equation

py cosx` 2xeyq ` psinx` x2ey ´ 1q
dy

dx
“ 0 (2.50)

Solution. This is an exercise we have seen in multi-variable calculus. We set Mpx, yq “ py cosx`
2xeyq and Npx, yq “ sinx` x2ey ´ 1. First, we calculate My and Nx:

Mypx, yq “ cosx` 2xey, Nx “ cosx` 2xey.

The equation (2.50) is exact since My “ Nx. Thus, there is a function ψpx, yq such that

ψx “ y cosx` 2xey, (2.51)

ψy “ sinx` x2ey ´ 1. (2.52)

Integrating (2.51) with respect to x, we obtain

ψpx, yq “ y sinx` x2ey ` hpyq

for some function hpyq depending only on y. Next, from the formula above, we calculate ψy and
obtain

ψypx, yq sinx` x2 ` ey ` h1pyq “ sinx` x2ey ´ 1.

Therefore, we obtain that h1pyq “ ´1 and hpyq “ ´y. The constant of integration here can
be omitted since any solution of the preceding differential equation is satisfactory; we do not
require the most general one. Substituting for h in the formula of ψ, we obtain

ψpx, yq “ y sinx` x2ey ´ y.

Hence, the general solution of (2.50) is given by

y sinx` x2ey ´ y “ C

for any arbitrary constant C.

Sometimes it is possible to convert a non-exact differential equation into an exact one by mul-
tiplying the equation by a suitable integrating factor. For instance, if the equation

Mpx, yq `Npx, yqy1 “ 0

is not exact, then we multiply the above equation by the so-called integrating factor µpx, yq such
that it becomes exact. That is,

µM ` µNy1 “ 0

is exact and µ satisfies

pµMqy “ pµNqx ðñ Mµy ´Nµx ` pMy ´Nxqµ “ 0.

If the integrating factor µ is only a function of x, that is µy “ 0, then we have

dµ

dx
“
My ´Nx

N
µ.

If pMy ´Nxq{N is a function of x only, then there is an integrating factor µ that also depends
only on x.
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Example 2.6.3. Solve the equation

p3xy ` y2q ` px2 ` xyqy1 “ 0 (2.53)

Solution. The equation (2.53) is not exact since

p3xy ` y2qy “ 3x` 2y ‰ px2 ` xyqx “ 2x` y.

However, we can find an integrating factor µpxq for this problem. Since

Mypx, yq ´Nxpx, yq

Npx, yq
“

3x` 2y ´ p2x` yq

x2 ` xy
“

1

x
,

there is an integrating factor µ that is a function of x only and µ satisfies

µ1pxq “
µ

x
ùñ µpxq “ x.

Multiplying µpxq “ x to the equation (2.53), it becomes

p3x2y ` xy2q ` px3 ` x2yqy1 “ 0.

This equation is exact since

p3x2y ` xy2qy “ 3x2 ` 2xy “ px3 ` x2yqx.

It remains to find the function ψpx, yq such that

ψxpx, yq “ 3x2y ` xy2, ψypx, yq “ x3 ` x2y.

Thus, we have

ψpx, yq “ x3y `
1

2
x2y2

and the solution of (2.53) is implicitly given by

x3y `
1

2
x2y2 “ C

for any arbitrary constant C.
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2.7 Exercises

There are 4 questions in this assignment. Answer all. Please write down your name and UIN.
The deadline is 5:00 pm (CDT), Sep 16 2022.

1. Consider the following first-order linear differential equation

dy

dt
`
t

2
y “ 1. (2.54)

(a) Find the general solution of (2.54) using method of integrating factor.

(b) Based on the result of (a), show that the general solution of (2.54) tends to a limit
as tÑ8 and find the limiting value. Hint: use L’Ĥopital’s rule.

2. Find the solution of the given initial value problem in explicit form

dy

dx
“ p1´ 2xqy2, yp0q “ ´

1

6
. (2.55)

3. Consider the following initial-value problem:

dy

dt
“
´t`

a

t2 ` 4y

2
,

yp2q “ ´1.

(2.56)

(a) Verify that both y1ptq “ 1 ´ t and y2ptq “ ´t
2{4 are solutions of (2.56). Find the

intervals where these solutions valid.

(b) Briefly explain why the existence of two solutions of the given problem above does
not contradict the fundamental results that we explained in class.

4. Consider the initial value problem

dy

dt
“ y1{3 yp0q “ 0. (2.57)

for t ě 0. Find the solution(s) to the initial-value problem. Can you find more than one
solution?
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Exercises

There are 5 questions in this assignment. Answer all. Please write down your name and UIN.
The deadline is 11:59 pm (CDT), Sep 30 2022.

1. Consider the following initial-value problem

dy

dt
“ fpyq yp0q “ y0, (2.58)

where fpyq “ αyp1´ yq, and the constants α ą 0 and y0 ą 0 are given.

(a) (Roughly) Sketch the graph of fpyq and find the equilibrium point(s) for the differ-
ential equation (2.58).

(b) Based on the information found in part (a), sketch (by hand, roughly) the graph of
the solution y.

(c) Solve the initial-value problem (2.58). What is the limit of the solution yptq as tÑ8

2. Show that the following problem is not exact but becomes exact when multiplied by the
given integrating factor µpt, yq. Then, solve the equation.

t2y3 ` tp1` y2q
dy

dt
“ 0, µpt, yq “

1

ty3
.

3. Solve the following given initial-value problems:

• y2 ` y1 ´ 2y “ 0, yp0q “ 1, y1p0q “ 1.

• 4y2 ´ y “ 0, yp´2q “ 1, y1p´2q “ ´1.

• 3y2 ´ y1 ` 2y “ 0, yp0q “ 2, y1p0q “ 0.

• y2 ´ 2y1 ` 5y “ 0, ypπ{2q “ 0, y1pπ{2q “ 2.

• 4y2 ` 4y1 ` y “ 0, yp0q “ 1, y1p0q “ 2.

• 9y2 ´ 12y1 ` 4y “ 0, yp0q “ 2, y1p0q “ ´1.

4. Find the determinant of the Wronskian matrix W ry1, y2; ts of the given pair of functions:
y1ptq “ cos2 t, y2ptq “ 1` cosp2tq.

5. Verify that y1ptq “ t2 and y2ptq “ t´1 are two solutions of the differential equation

t2y2 ´ 2y “ 0 t ą 0.

Compute also the determinant of Wronskian matrix of y1 and y2 at any point t.
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Reference Solutions of Exercises in Chapter 2

1. The general solution is

yptq “ e´t
2{4

ż t

t0

es
2{4ds` ce´t

2{4

for any arbitrary constants t0 and c. Using L’Ĥopital’s rule, we have

lim
tÑ8

yptq “ lim
tÑ8

şt
t0
es

2{4 ds

et2{4
“ lim

tÑ8

et
2{4

et2{40.5t
“ lim

tÑ8

2

t
“ 0.

2. Separating variables, we have

dy

y2
“ p1´ 2xqdx ùñ ´y´1 “ x´ x2 ` c ùñ ypxq “

1

x2 ´ x` c
.

Using the initial condition, we have c “ 6.

3. (a) Direct verification.

(b) Let fpt, yq “
´t`

a

t2 ` 4y

2
. Then, the partial derivative

Bf

By
“

2
a

t2 ` 4y
is not

continuous at pt0, y0q “ p2,´1q. As a result, the function fpt, yq does not satisfy the
conditions in Theorem 2.4.2 and does not contradict the uniqueness part of Theorem
2.4.2.

4. Separating variables, we have

dy

y1{3
“ dt ùñ

3

2
y2{3 “ t` c ùñ y2{3 “

2

3
t` c ùñ y2 “

8

27
t3 `

4c

3
t2 ` 2c2t` c3.

Using the initial condition, we have c “ 0. Then, the solution y satisfies y2 “ 8
27 t

3 and we
have two solutions

y1ptq “
2
?

6

9
t3{2 and y2ptq “ ´

2
?

6

9
t3{2.

5. Solving the equation, we obtain

dy

yp1´ yq
“ αdt ùñ

ˆ

1

y
´

1

y ´ 1

˙

dy “ αdt ùñ log

ˆ

y

y ´ 1

˙

“ αt` c,

1`
1

y ´ 1
“ Ceαt ùñ yptq “ 1`

1

Ceαt ´ 1
.

Using the initial condition, we have C “
y0

y0 ´ 1
. The limit of the solution is

lim
tÑ8

yptq “ lim
tÑ8

ˆ

1`
y0 ´ 1

y0eαt ´ y0 ` 1

˙

“ 1.

6. Direction verification. The general solution is

t2

2
´

1

2y2
` logpyq “ C

for any constant C.
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2.8 Suggested Practice Problems

These are suggested practice problems; no need to hand in.

1. Solve the following initial-value problem:

dy

dt
`

1

4
y “ 3` 2 cosp2tq, yp0q “ 0.

2. Let a and λ be positive constants, and b be any real number. Solve the differential equation:

dy

dt
` ay “ be´λt.

Discuss the cases when a ‰ λ and a “ λ separately.

3. Solve the differential equation:
dy

dt
` y2 sinptq “ 0.

4. Solve the differential equation:

dy

dt
“ cos2pxq cos2p2yq.

5. Solve the initial-value problem:

dy

dt
“ 2y2 ` xy2 yp0q “ 1.

6. Determine an interval in which the solution of the given initial-value problem is certain to
exist.

pt´ 3q
dy

dt
` plog tqy “ 2t yp1q “ 2.

7. Solve the following initial-value problem and determine how the interval in which the
solution exists depends on the initial-value y0:

dy

dt
“

t2

yp1` t3q
yp0q “ y0.

8. The following equation is of them form y1 “ fpyq. Sketch the graph of fpyq versus y, de-
termine the equilibrium points, and classify each one as asymptotically stable, semistable,
or unstable. Draw the phase line, and sketch several graphs of solutions in the ty-plane.

dy

dt
“ yp1´ y2q.

Also, find the general solution to verify whether your sketch of solutions in the ty-plane is
correct or not.

9. Find the value of b for which the given equation is exact, and then solve it using that value
of b.

pty2 ` bt2yq ` pt` yqt2
dy

dt
“ 0.
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Chapter 3

Second-Order Linear Differential
Equations

3.1 Homogeneous Equations with Constant Coefficients

Keywords: homogeneous equation, forcing function, characteristic equation

We study the following second-order linear differential equation:

d2y

dt2
` pptq

dy

dt
` qptqy “ gptq (3.1)

where pptq, qptq, and gptq are given and only depend on t but not y. Sometimes we write y1

and y2 to represent the first- and second-order derivatives of y with respect to t. In discussing
(3.1), and in trying to solve it, we restrict to intervals where pptq, qptq, and gptq are continuous.
We only cover little nonlinear second-order differential equation because of its difficulty to solve
analytically. The equation (3.1) is usually equipped with an initial condition of the following
form:

ypt0q “ y0, y1pt0q “ y10, (3.2)

where t0, y0, and y10 are given numbers. A second-order differential equation needs two initial
conditions because it involves two integrations to find a solution and each integration introduces
an arbitrary constant. The equation (3.1) is called

• homogeneous if gptq ” 0 for all t.

• Otherwise, it is called nonhomogeneous. In this case, the right-hand side function gptq is
usually called the forcing function since in many applications it describes an externally
applied force.

In this section, we concentrate on equation with the form when pptq and qptq are constants,
and gptq ” 0. That is, we will mainly consider the following form of second-order homogeneous
equation with initial conditions:

ay2 ` by1 ` cy “ 0, ypt0q “ y0, y1pt0q “ y10, (3.3)

where a ‰ 0, b, and c are given constants. Here, we state the steps of solving (3.3).

49
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1. Suppose that the solution of (3.3) is of the form yptq “ ert for some constant r to be
determined.

2. Plug yptq “ ert into the equation (3.3). It follows that y2 “ r2ert and y1 “ rert. The
equation (3.3) becomes

par2 ` br ` cqert “ 0.

Since ert ‰ 0, it is equivalent to

ar2 ` br ` c “ 0. (3.4)

This is called the characteristic equation for (3.3). The characteristic equation has two
roots (which may be real and different, complex conjugates, or real but repeated).

3. Solve (3.4) and find out its roots (denoted as r1 and r2).

4. Assume that r1 ‰ r2. The general solution of (3.1) is

yptq “ c1e
r1t ` c2e

r2t (3.5)

where c1 and c2 are arbitrary constants.

5. To determine the values of c1 and c2, we have to make use of the initial conditions

ypt0q “ y0 and y1pt0q “ y10.

We set t “ t0 and y “ y0 in (3.5) and obtain

c1e
r1t0 ` c2e

r2t0 “ y0. (3.6)

Moreover, we calculate y1ptq using the formula of general solution and set t “ t0 and
y1pt0q “ y10. We obtain

y1ptq “ r1c1e
r1t ` r2c2e

r2t

and

r1c1e
r1t0 ` r2c2e

r2t0 “ y10. (3.7)

6. Solving (3.6) and (3.7), we obtain the values of c1 and c2:

c1 “
y10 ´ y0r2
r1 ´ r2

e´r1t0 and c2 “
y0r1 ´ y

1
0

r1 ´ r2
e´r2t0 .

Remark: we consider the cases when r1 and r2 are complex conjugates and r1 “ r2 in Sections
3.3 and 3.4.

Example 3.1.1. Solve the equation

y2 ´ y “ 0. (3.8)

Also find the solution that satisfies the initial conditions yp0q “ 2 and y1p0q “ ´1.
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Solution. First, we write the characteristic equation of (3.8). Let yptq “ ert be the solution.
Then, we substitute it in (3.8) and obtain

pr2 ´ 1qert “ 0 ðñ r2 ´ 1 “ 0.

Then, we obtain two roots of the characteristic equation: r1 “ 1 and r2 “ ´1. Hence, the
general solution of (3.8) is

yptq “ c1e
t ` c2e

´t ùñ y1ptqc1e
t ´ c2e

´t.

Here, c1 and c2 are arbitrary constants. To find the values of c1 and c2, we make use of the
initial conditions yp0q “ 2 and y1p0q “ ´1. Thus, we have

2 “ c1 ` c2 and ´ 1 “ c1 ´ c2.

Solving c1 and c2, we obtain

c1 “
1

2
and c2 “

3

2
.

The solution of the initial-value problem is

yptq “
1

2
et `

3

2
e´t.

Example 3.1.2. Find the general solution of

y2 ` 5y1 ` 6y “ 0. (3.9)

Assume that the solution satisfies the initial conditions yp0q “ 2 and y1p0q “ 3. Find the solution
of the initial-value problem.

Solution. First, we write the characteristic equation of (3.9). It becomes

r2 ` 5r ` 6 “ pr ` 2qpr ` 3q “ 0.

Thus, the roots of the characteristic equation are r “ ´2 and r “ ´3. Therefore, the general
solution of (3.9) is

yptq “ c1e
´2t ` c2e

´3t ùñ y1ptq “ ´2c1e
´2t ´ 3c2e

´3t.

where c1 and c2 are arbitrary constants. To determine the values of c1 and c2, we make use of
the initial conditions. Thus, we obtain

2 “ c1 ` c2 and 3 “ ´2c1 ´ 3c2.

Solve the equations above, we obtain c1 “ 9 and c2 “ ´7. Therefore, the solution of initial-value
problem is

yptq “ 9e´2t ´ 7e´3t.

Example 3.1.3. Find the solution of the initial-value problem:

4y2 ´ 8y1 ` 3y “ 0, yp0q “ 2, y1p0q “
1

2
. (3.10)
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Solution. First, we write the characteristic equation of (3.10). It becomes

4r2 ´ 8r ` 3 “ p2r ´ 3qp2r ´ 1q “ 0.

Thus, we have r1 “ 3{2 and r2 “ 1{2. The general solution of (3.10) is

yptq “ c1e
3t{2 ` c2e

t{2 ùñ y1ptq “
3

2
c1e

3t{2 `
1

2
c2e

t{2.

Applying the initial conditions, we obtain

c1 ` c2 “ 2 and
3

2
c1 `

1

2
c2 “

1

2
.

Then, we obtain that c1 “ ´1{2 and c2 “ 5{2. The solution of the initial-value problem is

yptq “ ´
1

2
e3t{2 `

5

2
et{2.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

Keywords: Wronskian, Fundamental set of Solutions, Superposition

We state the fundamental results of second-order linear differential equation with initial condi-
tions.

Theorem 3.2.1. The initial-value problem

y2 ` pptqy1 ` qptqy “ gptq, ypt0q “ y0, y1pt0q “ y10, (3.11)

where pptq, qptq, and gptq are continuous on an open interval I that contains t0, has exactly one
solution y “ φptq, and the solution exists throughout the interval I.

Example 3.2.2. Consider the initial-value problem:

pt2 ´ 3tqy2 ` ty1 ´ pt` 3qy “ 0, yp1q “ 2, y1p1q “ 1. (3.12)

Analyze the existence and uniqueness of the initial-value problem using Theorem 3.2.1.

Solution. We first divide the equation by t2 ´ 3t “ tpt´ 3q and obtain

y2 `
1

t´ 3
y1 ´

t` 3

tpt´ 3q
y “ 0.

We have pptq “ 1{pt´ 3q and qptq “ ´pt` 3q{rtpt´ 3qs. The only points of discontinuity of the
functions are t “ 0 and t “ 3. The longest open interval, containing the initial point t “ 1, in
which all coefficients are continuous is 0 ă t ă 3. This is the longest interval in which Theorem
3.2.1 guarantees that the solution exists.

To simply notation, we denote
Lrys :“ y2 ` py1 ` qy

and the value of Lrys at a point t is denoted as

Lrysptq :“ y2ptq ` pptqy1ptq ` qptqyptq.
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Assume that y1 and y2 are two solutions of the differential equation:

Lrys “ y2 ` py1 ` qy “ 0. (3.13)

It is easy to observe that any linear combination of y1 and y2 is the solution of the differential
equation (3.13). We have the following result.

Theorem 3.2.3. Let y1 and y2 be two solutions of the differential equation (3.13). Then, any
linear combination c1y1 ` c2y2 of y1 and y2 is also a solution of the differential equation (3.13),
for any values of c1 and c2.

Theorem 3.2.3 states that, starting with only two solutions (y1 and y2) of (3.13), we can construct
an infinite family of solutions by means of its linear combination

yptq “ c1y1ptq ` c2y2ptq.

Now to determine the values of c1 and c2, we apply the initial condition

ypt0q “ y0, y1pt0q “ y10.

These initial conditions require c1 and c2 to satisfy

c1y1pt0q ` c2y2pt0q “ y0,

c1y
1
1pt0q ` c2y

1
2pt0q “ y10.

(3.14)

Define the Wronskian determinant (or Wronskian) of y1 and y2 at t0:

W “W ry1, y2; t0s :“

ˇ

ˇ

ˇ

ˇ

y1pt0q y2pt0q
y11pt0q y12pt0q

ˇ

ˇ

ˇ

ˇ

“ y1pt0qy
1
2pt0q ´ y

1
1pt0qy2pt0q. (3.15)

• If W ‰ 0, then (3.14) has a unique solution pc1, c2q regardless of the values of y0 and y10.
The values of c1 and c2 are given by

c1 “
y0y

1
2pt0q ´ y

1
0y2pt0q

y1pt0qy12pt0q ´ y
1
1pt0qy2pt0q

“

ˇ

ˇ

ˇ

ˇ

y0 y2pt0q
y10 y12pt0q

ˇ

ˇ

ˇ

ˇ

W
,

c2 “
´y0y

1
1pt0q ` y

1
0y1pt0q

y1pt0qy12pt0q ´ y
1
1pt0qy2pt0q

“

ˇ

ˇ

ˇ

ˇ

y1pt0q y0
y11pt0q y10

ˇ

ˇ

ˇ

ˇ

W
.

(3.16)

With these values of c1 and c2, the linear combination y “ c1y1ptq ` c2y2ptq satisfies the
differential equation and the initial conditions.

• If W “ 0, the equation (3.14) has no solution unless y0 and y10 have values that also make
the numerators in (3.16) equal to zero. Thus, if W “ 0, there are many initial conditions
that cannot be satisfied no matter how c1 and c2 are chosen.

We have the following result to summarize the existence and uniqueness of second-order differ-
ential equation.

Theorem 3.2.4. Let y1 and y2 be two solutions of the differential equation

Lrys “ y2 ` pptqy1 ` qptqy “ 0
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and that initial conditions

ypt0q “ y0, y1pt0q “ y10

are assigned. Then, it is always possible to choose the constants c1 and c2 so that

y “ c1y1ptq ` c2y2ptq

satisfies the differential equation and the initial conditions given above if and only if the Wron-
skian

W ry1, y2; t0s “ y1pt0qy
1
2pt0q ´ y

1
1pt0qy2pt0q ‰ 0.

The two-parameter family of solutions

y “ c1y1ptq ` c2y2ptq

with arbitrary coefficients c1 and c2 includes every solution of the differential equation if and
only if there is a point t0 where the Wronskian of y1 and y2 is not zero. In this case, we call y1
and y2 form a fundamental set of solutions of the differential equation if their Wronskian is
nonzero.

Example 3.2.5. The differential equation

y2 ` 5y1 ` 6y “ 0

has two solutions y1ptq “ e´2t and y2ptq “ e´3t. Find the Wronskian of y1 and y2 for any given
values of y0.

Solution. The Wronskian of these two functions is

W re´2t, e´3t; t0s “

ˇ

ˇ

ˇ

ˇ

e´2t0 e´3t0

´2e´2t0 ´3e´3t0

ˇ

ˇ

ˇ

ˇ

“ ´e´5t0 ‰ 0.

Since W is nonzero for all values of t0, the functions y1 and y2 can be used to construct solutions
of the given differential equation, together with initial conditions prescribed at any values of t0.
In this case, y1ptq “ e´2t and y2ptq “ e´3t form a fundamental set of solutions of the differential
equation y2 ` 5y1 ` 6y “ 0.

Example 3.2.6. In general, if y1ptq “ er1t and y2ptq “ er2t are two solutions of the differential
equation

y2 ` pptqy1 ` qptqy “ 0,

and if r1 ‰ r2, then y1 and y2 form a fundamental set of solutions since

W ry1, y2; t0s “

ˇ

ˇ

ˇ

ˇ

er1t0 er2t0

r1e
r1t0 r2e

r2t0

ˇ

ˇ

ˇ

ˇ

“ pr2 ´ r1qe
pr1`r2qt0 ‰ 0

for any value of t0.

Example 3.2.7. Verify that y1ptq “ t1{2 and y2ptq “ t´1 are solutions of the following differential
equation

2t2y2 ` 3ty1 ´ y “ 0 t ą 0.

Compute the Wronskian of y1 and y2 at t0.
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Solution. Since we have

y11ptq “
1

2t1{2
and y21ptq “ ´

1

4t3{2
,

we have

2t2
ˆ

´
1

4t3{2

˙

` 3t

ˆ

1

2t1{2

˙

´ t1{2 “

ˆ

´
1

2
`

3

2
´ 1

˙

t1{2 “ 0.

Similarly,
y12ptq “ ´t

´2 and y22ptq “ 2t3,

we have
2t2p2t´3q ` 3tp´t´2q ´ t´1 “ p4´ 3´ 1qt´1 “ 0.

Next, we calculate the Wronskian

W ry1, y2; t0s “

ˇ

ˇ

ˇ

ˇ

ˇ

t
1{2
0 t´10

t
´1{2
0 {2 ´t´20

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´
3

2
t
´3{2
0 ‰ 0.

Consequently, we conclude that y1 and y2 form a fundamental set of solutions. Thus, the general
solution of the differential equation is

yptq “ c1t
1{2 ` c2t

´1, t ą 0.

We summarize the discussion in this section as follows: to find the general solution of the
differential equation

Lrys “ y2 ` pptqy1 ` qptqy “ 0, α ă t ă β,

• first find two functions y1 and y2 such that they satisfy the differential equation in α ă
t ă β.

• Compute the Wronskian W ry1, y2; ts and make sure that there is a point in the interval
such that the Wronskian is nonzero.

• Under these circumstances y1 and y2 form a fundamental set of solutions. The general
solution is

yptq “ c1y1ptq ` c2y2ptq,

where c1 and c2 are arbitrary constants.

• Furthermore, if initial conditions are given at a given point in α ă t ă β, then c1 and c2
are chosen so as to satisfy these conditions.

3.3 Complex Roots of the Characteristic Equation

Keywords: Complex Conjugate Roots, Euler’s Formula

In this section, we continue our discussion of the second-order linear differential equation:

ay2 ` by1 ` cy “ 0, (3.17)

where a, b, and c are given real numbers. In Section 3.1, we found that if we seeks solution of
the form y “ ert, then r must be a root of the characteristic equation:

ar2 ` br ` c “ 0. (3.18)
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We denote r1 and r2 the roots of (3.18). We dealt with the case when r1 ‰ r2 in Section 3.1.
In this section, we discuss the case when r1 and r2 are complex conjugates. When b2´ 4ac ă 0,
the roots of (3.18) are conjugate complex numbers. Thus, we may denote

r1 “ λ` iµ, r2 “ λ´ iµ, (3.19)

where λ and µ are real and i is the imaginary number such that i2 “ ´1. In this case, the
corresponding expressions for y1 and y2 are

y1ptq “ exp prλ` iµstq “ eλteiµt “ eλt pcospµtq ` i sinpµtqq ,

y2ptq “ exp prλ´ iµstq “ eλte´iµt “ eλt pcospµtq ´ i sinpµtqq ,
(3.20)

where we have made use of the Euler’s formula:

eit “ cos t` i sin t,

e´it “ cos t´ i sin t.
(3.21)

The following result is fundamental in dealing with differential equations with complex-valued
solutions.

Theorem 3.3.1. Consider the second-order linear differential equation:

y2 ` pptqy1 ` qptqy “ 0, (3.22)

where p and q are continuous real-valued functions. If yptq “ uptq ` ivptq is a complex-valued
solution of (3.22), then its real part uptq and imaginary part vptq are also solutions of this
equations. Conversely, if two real-valued functions uptq and vptq satisfy (3.22), then the complex-
valued function y “ u` iv is also a solution of (3.22).

For r1 “ λ` iµ and r2 “ λ´ iµ, we can also choose

uptq “ eλt cospµtq,

vptq “ eλt sinpµtq,
(3.23)

to form a fundamental set of solutions of (3.17) since the Wronskian W ru, v; ts is

W ru, v; ts “

ˇ

ˇ

ˇ

ˇ

uptq vptq
u1ptq v1ptq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

eλt cospµtq eλt sinpµtq
´µeλt sinpµtq µeλt cospµtq

ˇ

ˇ

ˇ

ˇ

“ µe2λt.

In this case, the general solution of (3.17) can be written as

yptq “ c1uptq ` c2vptq “ eλtpc1 cospµtq ` c2 sinpµtqq.

Example 3.3.2. Find the general solution of the differential equation

y2 ` y1 ` 9.25y “ 0. (3.24)

Also find the solution that satisfies the initial conditions:

yp0q “ 2, y1p0q “ 8. (3.25)

Solution. First, we solve the characteristic equation of (3.24):

r2 ` r ` 9.25 “ 0
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so its roots are

r1 “ ´
1

2
` 3i, r2 “ ´

1

2
´ 3i.

Therefore, two solutions of (3.24) are

y1ptq “ e´t{2 pcosp3tq ` i sinp3tqq ,

y2ptq “ e´t{2 pcosp3tq ´ i sinp3tqq .
(3.26)

The Wronskian of y1 and y2 is

W ry1, y2; ts “

ˇ

ˇ

ˇ

ˇ

y1ptq y2ptq
y11ptq y12ptq

ˇ

ˇ

ˇ

ˇ

“ ´6ie´t ‰ 0.

Hence, the general solution of (3.24) can be expressed as yptq “ c1y1ptq ` c2ptq. However, the
initial-value problem (3.24) and (3.25) has only real coefficients, and it is often desirable to
express the solution in terms of real-valued functions. To do this, we know from Theorem 3.3.1
that uptq “ e´t{2 cosp3tq and vptq “ e´t{2 sinp3tq are the solutions of (3.24). We find that

W ru, v; ts “

ˇ

ˇ

ˇ

ˇ

uptq vptq
u1ptq v1ptq

ˇ

ˇ

ˇ

ˇ

“ 3e´t
`

cos2p3tq ´ p´ sin2p3tqq
˘

“ 3e´t ‰ 0.

Therefore, uptq and vptq form a fundamental set of solutions of (3.24), and the general solution
can be written as

yptq “ c1uptq ` c2vptq “ e´t{2 pc1 cosp3tq ` c2 sinp3tqq ,

where c1 and c2 are arbitrary. Applying the initial conditions, we obtain

c1 “ 2 and ´
1

2
c1 ` 3c2 “ 8.

Therefore, we have c1 “ 2 and c2 “ 3. The solution of the initial-value problem (3.24) and
(3.25) is

yptq “ e´t{2 p2 cosp3tq ` 3 sinp3tqq .

Example 3.3.3. Find the solution of the initial-value problem

16y2 ´ 8y1 ` 145y “ 0, yp0q “ ´2, y1p0q “ 1. (3.27)

Solution. The characteristic equation is

16r2 ´ 8r ` 145 “ 0

and its roots are

r1 “
1

4
` 3i, r2 “

1

4
´ 3i.

Thus, the general solution is

yptq “ et{4 pc1 cosp3tq ` c2 sinp3tqq .

Applying the first initial condition, we set t “ 0 and obtain

yp0q “ c1 “ ´2.
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For the second initial condition, we differentiate the general solution and set t “ 0. In this way,
we obtain

y1p0q “
1

4
c1 ` 3c2 “ 1 ùñ c2 “

1

2
.

Therefore, the solution of the initial-value problem (3.27) is

yptq “ ´2et{4 cosp3tq `
1

2
et{4 sinp3tq.

Example 3.3.4. Find the general solution of

y2 ` 9y “ 0.

Solution. The characteristic equation is r2 ` 9 “ 0 with its roots r1 “ 3i and r2 “ ´3i. Thus,
the general solution is

yptq “ c1 cosp3tq ` c2 sinp3tq.

3.4 Repeated Roots; Reduction of Order

Keywords: Method of Reduction of Order

In this section, we continue our discussion of the second-order linear differential equation:

ay2 ` by1 ` cy “ 0, (3.28)

where a, b, and c are given real numbers. In Section 3.1, we found that if we seeks solution of
the form y “ ert, then r must be a root of the characteristic equation:

ar2 ` br ` c “ 0. (3.29)

We denote r1 and r2 the roots of (3.18). We dealt with the case when r1 ‰ r2 in Section 3.1; we
also discussed the case when r1 and r2 are complex conjugates in Section 3.3. In this section,
we discuss the case when r1 “ r2.

In the case when r1 “ r2, we must have

b2 ´ 4ac “ 0 and r1 “ r2 “ ´
b

2a
.

It immediate yields the same solution

y1ptq “ e´bt{p2aq

of the differential equation (3.28). To find the second solution, we assume that

yptq “ vptqy1ptq “ vptqe´bt{p2aq.

We find the formula of vptq. This procedure is called the method of reduction of order.
Substituting for y in (3.28) to determine vptq, we have

y1ptq “ v1ptqe´bt{p2aq ´
b

2a
vptqe´bt{p2aq,
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y2ptq “ v2ptqe´bt{p2aq ´
b

a
v1ptqe´bt{p2aq `

b2

4a2
vptqe´bt{p2aq.

Then, by substituting in (3.28), we have
„

a

ˆ

v2ptq ´
b

a
v1ptq `

b2

4a2
vptq

˙

` b

ˆ

v1ptq ´
b

2a
vptq

˙

` cvptq



e´bt{p2aq “ 0.

Cancelling the factor e´bt{p2aq, which is nonzero, and rearranging the remaining terms, we have

av2ptq ` p´b` bqv1ptq `

ˆ

b2

4a
´
b2

2a
` c

˙

vptq “ 0.

The term involving v1ptq is obviously zero. Further, the coefficient of vptq is

c´
b2

4a
“

4ac´ b2

4a
“ 0.

Hence, it reduces to
v2ptq “ 0 ðñ vptq “ c1 ` c2t.

As a result, we have
yptq “ c1e

´bt{p2aq ` c2te
´bt{p2aq.

Thus, y is a linear combination of the two solutions:

y1ptq “ e´bt{p2aq and y2ptq “ te´bt{p2aq.

The Wronskian W ry1, y2; ts is

W ry1, y2; ts “

ˇ

ˇ

ˇ

ˇ

e´bt{p2aq te´bt{p2aq

´ b
2ae

´bt{p2aq
`

1´ bt
2a

˘

e´bt{p2aq

ˇ

ˇ

ˇ

ˇ

“ e´bt{a ‰ 0.

Then, y1 and y2 form a fundamental set of solutions of (3.28) and the general solution of (3.28)
is

yptq “ c1e
´bt{p2aq ` c2te

´bt{p2aq. (3.30)

Example 3.4.1. Find the solution of the initial-value problem:

y2 ´ y1 `
y

4
“ 0, yp0q “ 2, y1p0q “

1

3
. (3.31)

Solution. The characteristic equation is

r2 ´ r `
1

4
“

ˆ

r ´
1

2

˙2

“ 0.

The roots are r1 “ r2 “ 1{2. Thus, the general solution of (3.31) is

yptq “ c1e
t{2 ` c2te

t{2.

Applying the first initial condition, we have

yp0q “ c1 “ 2.

Applying the second initial condition, we differentiate the general solution and set t “ 0. Thus,
we obtain

y1p0q “
1

2
c1 ` c2 “

1

3
ùñ c2 “ ´

2

3
.

Hence, the solution of the initial-value problem (3.31) is

yptq “ 2et{2 ´
2

3
tet{2.
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Example 3.4.2. Find the solution of the initial-value problem:

9y2 ´ 12y1 ` 4y “ 0, yp0q “ 2, y1p0q “ ´1. (3.32)

Solution. The characteristic equation is 9r2 ´ 12r ` 4 “ 0 with roots being

r “
12˘

?
122 ´ 4 ¨ 9 ¨ 4

18
“

2

3
.

The general solution is

yptq “ c1e
2t{3 ` c2te

2t{3 ùñ y1ptq “
2

3
c1e

2t{3 ` c2

ˆ

2

3
t` 1

˙

e2t{3.

Using the initial condition, we have

c1 “ 2,
2

3
c1 ` c2 “ ´1 ùñ c1 “ 2, c2 “ ´

5

3
.

Hence, the solution to the IVP is

yptq “ 2e2t{3 ´
5

3
te2t{3.

Example 3.4.3. Find the solution of the initial-value problem:

y2 ` 4y1 ` 4y “ 0, yp0q “ 2, y1p0q “ 1. (3.33)

Solution. The characteristic equation is r2 ` 4r ` 4 “ 0 with roots being

r “ ´2.

The general solution is

yptq “ c1e
´2t ` c2te

´2t ùñ y1ptq “ ´2c1e
´2t ` c2 p1´ 2tq e´2t.

Using the initial condition, we have

c1 “ 2, ´2c1 ` c2 “ ´1 ùñ c1 “ 2, c2 “ 3.

Hence, the solution to the IVP is

yptq “ 2e´2t ` 3te´2t.
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We summarize the results that we have obtained for second-order linear homogeneous
equations with constant coefficients ay2 ` by1 ` cy “ 0. Let r1 and r2 be the roots of the
corresponding characteristic equation ar2 ` br ` c “ 0.

• If r1 ‰ r2, then the general solution is

yptq “ c1e
r1t ` c2e

r2t.

• If r1 and r2 are complex conjugates with r1 “ λ ` iµ and r2 “ λ ´ iµ, then the
(real) general solution is

yptq “ eλt pc1 cospµtq ` c2 sinpµtqq .

• If r1 “ r2 “ r, then the general solution is

yptq “ c1e
rt ` c2te

rt.

• c1 and c2 are determined by initial conditions ypt0q “ y0 and y1pt0q “ y10, where t0,
y0, and y10 are given.

It is worth noting that the method of reduction order can be applied to more general case
that if we know that y1 is a solution of the second-order linear differential equation, then we can
set

yptq “ vptqy1ptq

to find out the second solution. In fact, if y1ptq solves the linear second order equation

P ptqy2ptq `Qptqy1ptq `Rptqyptq “ 0,

then substituting yptq “ vptqy1ptq will give

P pv2y1 ` 2v1y11 ` vy
2
1q `Qpv

1y1 ` vy
1
1q `Rpvy1q “ 0

ùñ y1Pv
2 ` p2y11P ` y1Qqv

1 ` pPy21 `Qy
1
1 `Ry1qv “ 0

ùñ y1Pv
2 ` p2y11P ` y1Qqv

1 “ 0

since Py21 `Qy
1
1 `Ry1 “ 0. There must be no term involving v.

Example 3.4.4. Given that y1ptq “ t´1 is a solution of

2t2y2 ` 3ty1 ´ y “ 0 t ą 0. (3.34)

Find a fundamental set of solutions.

Solution. We set yptq “ vptqt´1. Then, we have

y1ptq “ v1ptqt´1 ´ vptqt´2, y2ptq “ v2ptqt´1 ´ 2v1ptqt´1 ` 2vptqt´3.

Substituting for y, y1, and y2 in (3.34) and collecting terms, we obtain

2t2
`

v2ptqt´1 ´ 2v1ptqt´1 ` 2vptqt´3
˘

` 3t
`

v1ptqt´1 ´ vptqt´2
˘

´ vt´1 “ 0

ùñ 2tv2ptq ` p´4` 3qv1ptq ` p4t´1 ´ 3t´1 ´ t´1qvptq “ 0

ùñ 2tv2ptq ´ v1ptq “ 0.

(3.35)
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If we let w “ v1, then the second-order differential equation (3.35) becomes

2tw1ptq ´ w “ 0.

Separating the variables and solving for wptq, we find that

wptq “ v1ptq “ c1t
1{2.

Then, one final integration yields

vptq “
2

3
c1t

3{2 ` c2.

If follows that

yptq “ vptqt´1 “
2

3
c1t

1{2 ` c2t
´1

where c1 and c2 are arbitrary constants. The second term on the right-hand side is a multiple of
y1 and can be dropped, but the first term provides a new solution y2ptq “ t1{2. One can verify
that

W ry1, y2; ts “
3

2
t´3{2 ‰ 0 for t ą 0.

Consequently, y1ptq “ t´1 and y2ptq “ t1{2 form a fundamental set of solutions of (3.34).

3.5 Nonhomogeneous Equations; Method of Undetermined Co-
efficients

Keywords: Nonhomogeneous, Particular Solution, Undetermined Coefficiets

In this section, we study the nonhomogeneous equation:

y2 ` pptqy1 ` qptqy “ gptq. (3.36)

The corresponding homogeneous equation reads:

y2 ` pptqy1 ` qptqy “ 0 (3.37)

Observe that

• If Y1ptq and Y2ptq are two solutions of (3.36), then Y1´Y2 is a solution of the corresponding
homogeneous equation (3.37).

• Assume that the general solution of (3.37) is given by c1y1ptq ` c2y2ptq for some other
functions y1 and y2 with c1 and c2 being arbitrary, then the general solution of the non-
homogeneous equation (3.36) can be written as

yptq “ c1y1ptq ` c2y2ptq ` Y ptq

where Y ptq is any solution of the nonhomogeneous equation (3.36). We call Y ptq to be a
particular solution.

• In general, to solve the nonhomogeneous equation (3.36), we have to first find the general
solution of the corresponding homogeneous equation (3.37), and find a particular solution
of (3.36).

In the following examples, we introduce techniques for finding particular solutions using the
method of undetermined coefficients.
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Example 3.5.1. Find a particular solution of the following nonhomogeneous equation:

y2 ´ 3y1 ´ 4y “ 3e2t. (3.38)

Solution. We seek a particular solution Y such that Y 2 ´ 3Y 1 ´ 4Y is equal to 3e2t. Since the
exponential function reproduces itself through differentiation, the most plausible way to achieve
the desired result is to assume that Y ptq is some multiple of e2t, that is, we assume that

Y ptq “ Ae2t

where A is a coefficient to be determined. Then, we have

Y 2ptq “ 4Ae2t and Y 1ptq “ 2Ae2t.

Substituting these expressions into (3.38), we have

Y 2 ´ 3Y 1 ´ 4Y “ p4A´ 6A´ 4Aqe2t “ 3e2t ùñ ´6A “ 3 ùñ A “ ´
1

2
.

Thus, a particular solution is

Y ptq “ ´
1

2
e2t.

Example 3.5.2. Find a particular solution of the following nonhomogeneous equation:

y2 ´ 3y1 ´ 4y “ 2 sinptq. (3.39)

Solution. Since the right-hand side is 2 sinptq, the differentiation of sinptq and cosptq will produce
the trigonometric functions. As a result, we can assume that the particular solution Y ptq is

Y ptq “ A sinptq `B cosptq

for some coefficients A and B to be determined. By calculation, we have

Y 1ptq “ A cosptq ´B sinptq, Y 2ptq “ ´A sinptq ´B cosptq.

Substituting these into (3.39), we have

Y 2 ´ 3Y 1 ´ 4Y “ p´A` 3B ´ 4Aq sinptq ` p´B ´ 3A´ 4Bq cosptq “ 2 sinptq.

Then, we have
´5A` 3B “ 2, ´3A´ 5B “ 0.

Therefore, we have

A “ ´
5

17
, B “

3

17
.

The particular solution of (3.39) is

Y ptq “ ´
5

17
sinptq `

3

17
cosptq.

Example 3.5.3. Find a particular solution of the following nonhomogeneous equation:

y2 ´ 3y1 ´ 4y “ ´8et cosp2tq. (3.40)
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Solution. In this case, we assume Y ptq is the product of et and a linear combination of cosp2tq
and sinp2tq. That is, we assume that

Y ptq “ Aet cosp2tq `Bet sinp2tq.

Then, we have
Y 1ptq “ pA` 2Bqet cosp2tq ` p´2A`Bqet sinp2tq

and
Y 2ptq “ p´3A` 4Bqet cosp2tq ` p´4A´ 3Bqet sinp2tq.

By substituting these into (3.40), we find that A and B satisfy

10A` 2B “ 8, 2A´ 10B “ 0.

Hence, we have

A “
10

13
, B “

2

13
.

The particular solution of (3.40) is

Y ptq “
10

13
et cosp2tq `

2

13
et sinp2tq.

Suppose that the right-hand side gptq in (3.36) is the sum of two terms, that is, gptq “ g1ptq`g2ptq,
and suppose that Y1 and Y2 are solutions of the equations

y2 ` pptqy1 ` qptqy “ g1ptq

and
y2 ` pptqy1 ` qptqy “ g2ptq

respectively. Then, Y1 ` Y2 is a solution of the equation

y2 ` pptqy1 ` qptqy “ gptq.

For instance, to find a particular solution of

y2 ´ 3y1 ´ 4y “ 3e2t ` 2 sinptq ´ 8et cosp2tq,

we just add those particular solutions found in previous example to obtain a particular solution:

Y ptq “ ´
1

2
e2t ´

5

17
sinptq `

3

17
cosptq `

10

13
et cosp2tq `

2

13
et sinp2tq.

Example 3.5.4. Find a particular solution of

y2 ´ 3y1 ´ 4y “ 2e´t. (3.41)

Solution. If we assume that the particular solution is of them form Y ptq “ Ae´t, then we have

Y 2 ´ 3Y 1 ´ 4Y “ pA` 3A´ 4Aqe´t “ 2e´t.

Since the left-hand side of (3.41) is zero in this case, there is no choice of A for which 0 “ 2e´t.
Therefore, there is no particular solution of the assumed form. The reason for this is that
φptq “ e´t is a solution of the corresponding homogeneous equation y2 ´ 3y1 ´ 4y “ 0.
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Instead, we can assume that Y ptq “ Ate´t. Then, we have

Y 1ptq “ Ae´t ´Ate´t, Y 2ptq “ ´2Ae´t `Ate´t.

Substituting these expression into (3.41), we have

Y 2 ´ 3Y 1 ´ 4Y “ p´2A´ 3Aqe´t ` pA` 3A´ 4Aqte´t “ 2e´t.

The coefficient of te´t is zero, and from the terms involving e´t, we have ´5A “ 2 and so
A “ ´2{5. Thus, a particular solution of (3.41) is

Y ptq “ ´
2

5
te´t.

We remark that if the assumed form of the particular solution duplicates a solution of the corre-
sponding homogeneous equation, then modify the assumed particular solution by multiplying it
by t. Sometimes this modification will be insufficient to remove all duplication with the solutions
of the homogeneosu equation, in which case it is necessary to multiply by t a second time. For
a second-order equation, it will never be necessary to carry the process further than this.

We summarize the steps for solving

ay2 ` by1 ` cy “ gptq. (3.42)

• Find a general solution of the corresponding homogeneous equation ay2 ` by1 ` cy “ 0.
Denote c1y1ptq ` c2y2ptq its general solution.

• Make sure that the function gptq is of the form of exponential functions, sines, cosines,
polynomial, or sums or products of such functions. If this is not the case, use the method
of variation of parameters (in Section 3.6).

• If gptq “ g1ptq ` ¨ ¨ ¨ ` gnptq, then, we find the particular solution Yiptq to the following
subproblem

ay2 ` by1 ` cy “ giptq

for any i “ 1, ¨ ¨ ¨ , n. The particular solution of (3.42) is Y ptq “ Y1ptq ` ¨ ¨ ¨ ` Ynptq.

• The general solution of the nonhomogeneous equation is the sum of the particular solution
and the general solution of the homogeneous one. That is, the general solution of (3.42) is

yptq “ Y ptq ` c1y1ptq ` c2y2ptq.

• When initial conditions are provided, use them to determine the values of the arbitrary
constants remaining in the general solution.

3.6 Variation of Parameters

Keywords: variation of parameters, nonhomogeneous equations, Wronskian

In this section, we introduce the method of variation of parameters, to solve the second-order
linear differential equation. This is a general method and it can be applied to any equation, and
it requires no detailed assumptions about the form of the solution.
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Example 3.6.1. Find the general solution of the following equation:

y2 ` 4y “ 8 tan t ´
π

2
ă t ă

π

2
. (3.43)

Solution. First, we solve the corresponding homogeneous equation y2 ` 4y “ 0. The character-
istic equation is

r2 ` 4 “ 0 ùñ r “ ˘2i.

That is, the roots of the characteristic equation is r1 “ 2i and r2 “ ´2i. Hence, the general
solution of the homogeneous equation is

c1 cosp2tq ` c2 sinp2tq.

Next, we find the particular solution of (3.43). The basic idea in the method of variation of
parameters is similar to the method of reduction of order introduced in Section 3.4. We assume
that the solution of (3.43) has the form

yptq “ u1ptq cosp2tq ` u2ptq sinp2tq (3.44)

where the coefficients u1ptq and u2ptq are functions of t. We have to determine two functions
u1ptq and u2ptq. We need one more condition to determine u1ptq and u2ptq since currently we
just have the original equation (3.43). From the formula (3.44), we have

y1ptq “ ´2u1ptq sinp2tq ` 2u2ptq cosp2tq ` u11ptq cosp2tq ` u12ptq sinp2tq.

We require that

u11ptq cosp2tq ` u12ptq sinp2tq “ 0.

It then follows that

y1ptq “ ´2u1ptq sinp2tq ` 2u2ptq cosp2tq.

From this formula, we calculate y2:

y2ptq “ ´4u1ptq cosp2tq ´ 4u2ptq sinp2tq ´ 2u11ptq sinp2tq ` 2u12ptq cosp2tq.

Then, substituting for y and y2 into the equation (3.43), we find that

y2 ` 4y “ ´4u1ptq cosp2tq ´ 4u2ptq sinp2tq ´ 2u11ptq sinp2tq ` 2u12ptq cosp2tq ` 4u1ptq cosp2tq ` 4u2ptq sinp2tq

“ ´2u11ptq sinp2tq ` 2u12ptq cosp2tq “ 8 tan t.

To summarize, the functions u1ptq and u2ptq satisfy

u11ptq cosp2tq ` u12ptq sinp2tq “ 0,

´2u11ptq sinp2tq ` 2u12ptq cosp2tq “ 8 tan t.
(3.45)

From the first equation in (3.45), we have

u12ptq “ ´u
1
1ptq

cosp2tq

sinp2tq
.

Substituting this into the second equation and simplifying it, we obtain

u11ptq “ ´
8 tan t sinp2tq

2
“ ´8 sin2 t “ 4 cosp2tq ´ 4.
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Here, we have used the fact that

sinp2tq “ 2 sinptq cosptq and sin2 t “
1´ cosp2tq

2
.

It implies that
u11ptq “ 2 sinp2tq ´ 4t` c1

where c1 is an arbitrary constant. We solve u12ptq to obtain

u12ptq “
8 sin2 t cosp2tq

sinp2tq
“ 4

sin tp2 cos2 t´ 1q

cos t
“ 4 sin t

ˆ

2 cos t´
1

cos t

˙

“ 4 sinp2tq ´
4 sin t

cos t
.

Here, we have used the fact that sinp2tq “ 2 sin t cos t. Having obtained u11ptq and u12ptq, we next
integrate so as to find u1ptq and u2ptq:

u1ptq “

ż

p4 cosp2tq ´ 4qdt` c1 “ 2 sinp2tq ´ 4t` c1,

u2ptq “

ż
ˆ

4 sinp2tq ´
4 sin t

cos t

˙

dt` c2 “ ´2 cosp2tq ` 4 lnpcosptqq ` c2.

As a result, the general solution of (3.43) is

yptq “ u1ptq cosp2tq ` u2ptq sinp2tq

“ 2 sinp2tq cosp2tq ´ 4t cosp2tq ` 4 lnpcos tq sinp2tq ´ 2 cosp2tq sinp2tq ` c1 cosp2tq ` c2 sinp2tq

“ ´4t cosp2tq ` 4 lnpcos tq sinp2tq ` c1 cosp2tq ` c2 sinp2tq.

We remark that the terms involving c1 and c2 form the general solution of the corresponding
homogeneous equation, while the other terms form a particular solution of the nonhomogeneous
equation (3.43).

Example 3.6.2. Find the general solution of the following equation:

y2 ´ 2y1 ` y “
et

1` t2
. (3.46)

Solution. The characteristic equation of the corresponding homogeneous equation is r2´2r`1 “
pr ´ 1q2 “ 0. Thus, the general solution of the homogeneous equation is

c1e
t ` c2te

t.

We assume that the general solution of (3.46) is

yptq “ u1ptqe
t ` u2ptqte

t.

Then, we have
y1ptq “ u1e

t ` pt` 1qu2ptqe
t ` u11ptqe

t ` u12ptqe
t.

We require that
u11ptqe

t ` u12ptqte
t “ 0 ùñ u11ptq “ ´tu

1
2ptq.

As a result, we have
y1ptq “ u1ptqe

t ` pt` 1qu2ptqe
t

and

y2ptq “ u1ptqe
t ` pt` 2qu2ptqe

t ` u11ptqe
t ` pt` 1qu12ptqe

t “ u1ptqe
t ` pt` 2qu2ptqe

t ` u12ptqe
t
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Substituting these expression into (3.46), we have

y2 ´ 2y1 ` y “ u1ptqe
t ` pt` 2qu2ptqe

t ` u12ptqe
t ´ 2u1ptqe

t ´ 2pt` 1qu2ptqe
t ` u1ptqe

t ` u2ptqte
t

“ u12ptqe
t “

et

1` t2
.

Hence, we have

u11ptq “ ´tu
1
2ptq, u12ptq “

1

1` t2
.

As a result, we have

u1ptq “

ż
ˆ

´
t

1` t2

˙

dt` c1 “ ´
1

2
lnp1` t2q ` c1,

u2ptq “

ż
ˆ

1

1` t2

˙

dt` c2 “ arctan t` c2.

Hence, the general solution of (3.46) is

yptq “ ´
1

2
et lnp1` t2q ` tet arctan t` c1e

t ` c2te
t.

In general, for the second order (linear) nonhomogeneous equation (NHE) as follows:

y2 ` pptqy1 ` qptqy “ gptq, (3.47)

where p, q, and g are given continuous functions of t. Assume that we have a fundamental set
of solutions ty1, y2u to the corresponding homogeneous equation (HE) y2 ` pptqy1 ` qptqy “ 0
and thus the general solution of the HE can be written as

ycptq “ c1y1ptq ` c2y2ptq,

where c1 and c2 are arbitrary constants. This is a major assumption. The crucial idea of the
variation of parameters is to assume that the solution of the NHE has the form

yptq “ u1ptqy1ptq ` u2ptqy2ptq. (3.48)

Then we try to determine u1 and u2 so that (3.48) solves the NHE. From the formula (3.48), we
obtain y1 as follows:

y1ptq “ u11ptqy1ptq ` u1ptqy
1
1ptq ` u

1
2ptqy2ptq ` u2ptqy

1
2ptq.

As in the previous examples, we set

u11ptqy1ptq ` u
1
2ptqy2ptq “ 0. (3.49)

As a result, we have

y1ptq “ u1ptqy
1
1ptq ` u2ptqy

1
2ptq. (3.50)

Further by differentiating again, we obtain

y2ptq “ u11ptqy
1
1ptq ` u1ptqy

2
1ptq ` u

1
2ptqy

1
2ptq ` u2ptqy

2
2ptq.
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Substituting back to the original NHE, we have

u1ptq
`

y21ptq ` pptqy
1
1ptq ` qptqy1ptq

˘

` u2ptq
`

y22ptq ` pptqy
1
2ptq ` qptqy2ptq

˘

` u11ptqy
1
1ptq ` u

1
2ptqy

1
2ptq “ gptq.

(3.51)

Note that y1 and y2 solve the associated HE, hence the equation (3.51) reduces to

u11y
1
1ptq ` u

1
2ptqy

1
2ptq “ gptq.

Overall, we obtain a system of equation for u11 and u12:

u11ptqy1ptq ` u
1
2ptqy2ptq “ 0,

u11ptqy
1
1ptq ` u

1
2ptqy

1
2ptq “ gptq.

(3.52)

Solving the system we obtain

u11ptq “ ´
y2ptqgptq

|W ry1, y2sptq|
and u12ptq “

y1ptqgptq

|W ry1, y2sptq|
,

where W ry1, y2sptq is the Wronskian matrix of y1 and y2 with nonzero determinant. Hence, we
have

u1ptq “ ´

ż

y2ptqgptq

|W ry1, y2sptq|
dt` c1 and u2ptq “

ż

y1ptqgptq

|W ry1, y2sptq|
dt` c2.

Consequently, the solution of the NHE is

yptq “ ´y1ptq

ż

y2ptqgptq

|W ry1, y2sptq|
dt` y2ptq

ż

y1ptqgptq

|W ry1, y2sptq|
dt` c1y1ptq ` c2y2ptq.

3.7 Mechanical and Electrical Vibrations

Keywords: Newton’s second law, simple harmonic motion, damping, spring-mass
system, simple electric circuit

In this section, we discuss some applications of second-order differential equations in physics.
The second-order differential equations with constant coefficients can be used to describe many
important physical processes such as mechanical and electrical oscillations. In the following,
we study the motion of a mass on a spring in detail to understand the behavior of vibrating
systems. The principles involved are common to many problems.

Consider a mass m hanging at rest of the end of a vertical spring of original length `. The
mass causes an elongation L of the spring in the downward (positive direction). In this static
situation, there are two forces acting at the point where the mass is attached to the spring:
the gravitational force w “ mg (with g gravity acceleration) and a force Fs due to the spring
that acts upward. According to the Hooke’s law, the spring force is proportional to L if the
elongation L of the spring is small. That is, we write Fs “ ´kL, where the constant k is called
the spring constant, and the minus sign is due to the fact that the spring force acts in the upward
(negative) direction. Since the mass is in equilibrium, the two forces balance each other, which
yields

w ` Fs “ mg ´ kL “ 0.

For a given weight w “ mg, we can measure L and the use the above equation to determine k.
Note that k has the units of force per unit length.

In the corresponding dynamic problem, we are interested in studying the motion of the mass
when it is acted on by an external force or is initially displaced. Let uptq, measured positive in
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the downward direction, denote the displacement of the mass from its equilibrium position at
time t. Then, uptq is related to the forces acting on the mass through Newton’s law of motion:

mu2ptq “ fptq, (3.53)

where u2 is the acceleration of the mass and f is the net force acting on the mass. Observe that
both u and f are functions of time. In this dynamic problem there are now four separate forces
that must be considered.

1. The weight w “ mg of the mass always acts downward.

2. The spring force Fs is assumed to be proportional to the total elongation L ` u of the
spring and always acts to restore the spring to its natural position. If L` u ą 0, then the
spring is extended, and the spring force is directed upward. In this case,

Fs “ ´kpL` uq.

If L` u ă 0, then the spring is compressed a distance |L` u|, and the spring force, which
is now directed downward, is given by Fs “ k |L` u|. However, when L`u ă 0, it follows
that |L` u| “ ´pL` uq, so Fs is again given by the same relation above.

3. The damping force Fd always acts in the direction opposite to the direction of motion of
the mass and it is given by

Fdptq “ ´γu
1ptq,

where γ ą 0 is the so-called damping constant. This force may arise from several sources:
resistance from the air or other medium in which the mass moves, internal energy dissipa-
tion due to the extension or compression of the spring, friction between the mass.

4. An applied external force F ptq is directed downward or upward as F ptq is positive or
negative. Often the external force is periodic.

Taking account of these forces, we can now rewrite Newton’s law as

mu2ptq “ w ` Fs ` Fd ` F “ mg ´ kpL` uptqq ´ γu1ptq ` F ptq.

Since mg ´ kL “ 0, we have

mu2ptq ` γu1ptq ` kuptq “ F ptq, (3.54)

where m, γ, and k are positive. This model is only an approximation model for the displacement
uptq. In particular, there are many other ways of describing the damping or spring forces. In
the above derivation we have also neglected the mass of the spring in comparison with the mass
of the attached body.

The complete formulation of the vibration problem requires that we specify two initial conditions,
namely, the initial position u0 and the initial velocity v0 of the mass:

up0q “ u0 and u1p0q “ v0.

Example 3.7.1 (Simple Harmonic Motion). Now we study a simplified version of the general
vibrational system (3.54). Assume that there is no external force (F ptq “ 0) and no damping
γ “ 0. Then, it becomes

mu2 ` ku “ 0. (3.55)
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The characteristic equation reads

mr2 ` k “ 0 ùñ r “ ˘i

c

k

m
“: ˘iω0, ω0 “

c

k

m
.

The constant ω0 is the so-called vibrational frequency of the system. Then, the general solution
to (3.55) is

uptq “ A cospω0tq `B sinpω0tq,

where A and B are two arbitrary constants determined by the initial conditions. In discussing
the solution formula, it is convenient to rewrite the equation in the form

uptq “ R cospω0t´ δq, (3.56)

where

A “ R cos δ, B “ R sin δ, R “
a

A2 `B2, and tan δ “
B

A
.

It is easy to verify that if R and δ in (3.56) satisfies

R cospω0t´ δq “ A cospω0tq `B sinpω0tq,

using the trigonometric formula cospα´ βq “ cosα cosβ ` sinα sinβ (with α “ ω0t and β “ δ),
we have

uptq “ R cospδq cospω0tq `R sinpδq sinpω0tq “ A cospω0tq `B sinpω0tq.

This implies that A “ R cos δ and B “ R sin δ. Thus, R “
?
A2 `B2 and tan δ “ B{A. In

calculating δ, we have to choose the correct quadrant; this can be done by checking the signs of
cos δ and sin δ. This model describes a periodic (or simple harmonic) motion of the mass. The
period of the motion is

T “
2π

ω0
“ 2π

c

m

k
.

The maximum displacement R of the mass from equilibrium is the amplitude of the motion. The
dimensionless parameter δ is called the phase, or phase angle, and it measures the displacement
of the wave from its normal position corresponding to δ “ 0.

Note that the motion described by (3.56) has a constant amplitude that does not diminish with
time. This reflects the fact that, in the absence of damping, there is no way for the system to
dissipate the energy imparted to it by the initial displacement and velocity. For a given mass
m and spring constant k, the system vibrates at the same frequency ω0, regardless of the initial
conditions. However, the initial conditions do help to determine the amplitude of the motion.
The period T increases as the mass increases, so lager masses vibrate more slowly. On the other
hand, T decreases as k increases, which means that stiffer springs cause the system to vibrate
more rapidly.

Example 3.7.2 (Damped Free Vibrations). We consider the case with no external force but
included damping. That is, the governing equation becomes

mu2 ` γu1 ` ku “ 0. (3.57)

The characteristic equation is
mr2 ` γr ` k “ 0

and its roots are

r “
´γ ˘

a

γ2 ´ 4km

2m
.

Denote r1 and r2 the roots with positive and negative signs in the above formula, respectively.
Depending on the sign of γ2 ´ 4km, the solution u has one of the forms:
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• γ2 ´ 4km ą 0, u “ Aer1t `Ber2t;

• γ2 ´ 4km “ 0, u “ pA`Btqe´γt{p2mq;

• γ2´ 4km ă 0, u “ e´γt{p2mq pA cospµtq `B cospµtqq, where µ “ p2mq´1p4km´ γ2q1{2 ą 0.

Note that m, γ, and k are positive, we always have γ2´4km ă γ2. Hence, if γ2´4km ě 0, then
the values of r1 and r2 are always negative. If γ2 ´ 4km ă 0, then the values of r1 and r2 are
complex with negative real part. Thus, in all cases, the solution uÑ 0 as tÑ `8; this occurs
regardless of the values of the arbitrary constants, i.e., the initial conditions. This confirms our
intuitive expectation, namely, that damping gradually dissipates the energy initially imparted
to the system, and consequently the motion dies out with increasing time.

Now we study the third case with γ2 ´ 4km ă 0. It occurs when the damping is very small.
If we let A “ R cos δ and B “ R sin δ with appropriate R and δ, we obtain the solution in the
following form:

uptq “ Re´γt{p2mq cospµt´ δq.

The displacement u lies between ˘Re´γt{p2mq; thus it resembles a cosine wave whose amplitude
decreases as t increases.

Figure 3.1: Damped vibration without external force.

This motion is called damped oscillation or damped vibration. The overall amplitude factor de-
pends on m, γ, k, and the initial conditions. Note that this motion is not periodic and the
parameter µ determines the frequency with which the mass oscillates back and forth; conse-
quently, µ is called the quasi-frequency. By comparing µ with the frequency ω0 of undamped
motion, we obtain

µ

ω0
“
p2mq´1p4km´ γ2q1{2

pk{mq1{2
“

ˆ

1´
γ2

4km

˙1{2

« 1´
γ2

8km
.

The last approximation comes from the Taylor expansion and it is valid only when γ2{4km is
small; we refer to this situation as small damping. Thus the effect of small damping is to reduce
slight the frequency of the oscillation. By analogy, we can define the quasi-period Td to be

Td “
2π

µ

of the motion. It is the time between successive maxima or successive minima of the position
of the mass, or between successive passages of the mass through its equilibrium position while
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going in the same direction. The relation between Td and T is given by

Td
T
“
ω0

µ
“

ˆ

1´
γ2

4km

˙´1{2

« 1`
γ2

8km
,

where again the last approximation is valid in the small damping regime. Thus small damping
increases the quasi-period. We remark that it is not the magnitude of γ alone that determines
whether damping is large or small, but the magnitude of γ2{p4kmq. When γ2{p4kmq is small,
then damping has a small effect on the quasi-frequency and quasi-period of the motion. On the
other hand, if we want to study the detailed motion of the mass for all time, then we can never
neglect the damping force, no matter how small it is.

Another situation can happen when γ2{p4kmq increases. As it increases, the quasi-frequency µ
decreases and the quasi-period Td increases. In fact, µ Ñ 0 and Td Ñ `8 when γ Ñ 2

?
km.

As indicated in the solution formulas, the nature of the solution changes as γ passes through
the value 2

?
km. The motion with γ “ 2

?
km is said to be critically damped. For larger values

of γ with γ ą 2
?
km, the motion is said to be overdamped. In these cases, the mass may pass

through its equilibrium position at most once and then creep back to it. The mass does not
oscillate about the equilibrium, as it does for small γ.

Example 3.7.3. We consider the model of a simple electric circuit. The current I (measured
in Amperes) is a function of time t. The resistance R (in Ohms), the capacitance C (in Farads),
and the inductance L (in Henrys) are all positive and are assumed to be known constants. The
impressed voltage E (in Volts) is a given function of time t. Another physical quantity that
enters the discussion is the total charge Q (in Coulombs) on the capacitor at time t. The relation

Figure 3.2: A simple electric circuit.

between charge Q and current I is
Iptq “ Q1ptq.

The flow of current in the circuit is governed by Kirchhoff’s second law: In a closed circuit the
impressed voltage is equal to the sum of voltage drops in the rest of the circuit. According to
the elementary laws of electricity, we know that (i) the voltage drop across the resistor is RI;
(ii) the voltage drop across the capacitor is Q{C; and (iii) the voltage drop across the inductor
is LI 1ptq. Hence, by Kirchhoff’s law, we have

LI 1ptq `RIptq `
1

C
Qptq “ Eptq.

Noting that I “ Q1ptq, we obtain the differential equation

LQ2ptq `RQ1ptq `
1

C
Qptq “ Eptq (3.58)
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for the charge Q. The initial conditions are

Qpt0q “ Q0 and Q1pt0q “ Ipt0q “ I0.

The model describing this simple electric circuit is again the second-order differential equation
with constant coefficients, which is precisely the same form as the one that describes the motion
of a spring-mass system. This is a good example of the unifying role of mathematics: once you
know how to solve second-order linear equations with constant coefficients, you can interpret
the results in terms of mechanical vibrations, electric circuits, or any other physical situation
that leads to the same problem.

3.8 Forced Periodic Vibrations

Keywords: transient and steady-state solutions, forcing functions

In this section, we investigate the vibrational system with periodic external force. The behavior
of this simple system models that of many oscillatory systems with an external force due, for
example, to a motor attached to the system. We first consider the damping case and look later
at the idealized special case without any damping.

Example 3.8.1 (Forced Vibrations with Damping). Let the motion of a certain spring-mass
system satisfies the differential equation

u2 ` u1 `
5

4
u “ 3 cos t, (3.59)

and the initial conditions up0q “ 2 and u1p0q “ 3. We find out the solution to this IVP and
describe the behavior of the solution for large t. The characteristic equation reads:

r2 ` r `
5

4
“ 0 ðñ r “ ´

1

2
˘ i.

Thus a general solution of the homogeneous equation has the form

e´t{2 pc1 cosptq ` c2 sinptqq .

A particular solution of the equation has the form Uptq “ A cos t`B sin t, where A and B can
be found using the method of undetermined coefficients. One can figure out that A “ 12{17 and
B “ 48{17. Therefore, the particular solution U has the form

Uptq “
12

17
cos t`

48

17
sin t.

The general solution of the model problem (3.59) is

uptq “ e´t{2 pc1 cosptq ` c2 sinptqq `
12

17
cos t`

48

17
sin t.

Using the initial conditions, we obtain that c1 “ 22{17 and c2 “ 14{17. Finally, we have the
solution to the IVP as follows:

uptq “ e´t{2
ˆ

22

17
cosptq `

14

17
sinptq

˙

loooooooooooooooooomoooooooooooooooooon

Transient solution

`
12

17
cosptq `

48

17
sinptq

loooooooooooomoooooooooooon

Steady-state solution

. (3.60)
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Figure 3.3: Solution profiles of the IVP.

Note that the above solution uptq consists of two distinct parts: transient and steady-state
solutions. The transient solution contains the exponential factor e´t{2 and as a result it rapidly
approaches zero. While the stead-state solution involves only sine and cosine functions, so they
represent an oscillation that continues indefinitely.

We remark that the transient part comes from the solution of the homogeneous equation and the
initial conditions. The steady-state solution is the particular solution of the full nonhomogeneous
equation. After a fairly short time, the transient solution is vanishingly small and the full solution
is essentially indistinguishable from the steady state.

In general, consider the spring-mass model problem with external force F ptq ‰ 0 and initial
conditions:

mu2ptq ` γu1ptq ` kuptq “ F ptq,

upt0q “ u0,

u1pt0q “ v0,

(3.61)

where m, γ, k are the mass, damping coefficient, and spring constant. They are all positive.
The terms u0 and v0 can be interpreted as the initial displacement and initial velocity. Suppose
now that the external force is given by some periodic function. For instance, consider the case
when F ptq has the following form

F ptq “ F0 cospωtq

where F0 and ω are positive constants representing the amplitude and frequency, respectively,
of the force. Combining all we have developed in this course, we know that the solution to the
spring-mass system (3.61) in this case has the form as follows:

uptq “ c1u1ptq ` c2u2ptq
looooooooomooooooooon

ucptq

`A cospωtq `B sinpωtq
looooooooooooomooooooooooooon

Uptq

. (3.62)

The first two terms (denoting ucptq their sum) come from the homogeneous equation corre-
sponding to (3.61) and the latter term Uptq is a particular solution of the full nonhomogeneous
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equation. The coefficients A and B can be found as usual with the method of undetermined
coefficients, while the constants c1 and c2 are determined by the initial conditions u0 and v0.

The homogeneous solutions u1 and u2 depends on the characteristic roots r1 and r2 of the
equation mr2 ` γr ` k “ 0. Since m, γ, and k are positive, it follows that r1 and r2 either are
real and negative or are complex conjugates with a negative real part. In either case, both u1
and u2 approach zero as tÑ `8. Thus, ucptq dies out as t increases, and we called it transient
solution. In many applications, it is of little importance and (depending on the value of γ) may
well be undetectable after only a short period of time.

The remaining term Uptq “ A cospωtq ` B sinpωtq does not die out as t increases but persist
indefinitely, or as long as the external force is applied. They represent a steady oscillation with
the same frequency as the external force and it is called the steady-state solution or the forced
response of the system. The transient solution enables us to satisfy whatever initial conditions
u0 and v0 are imposed. With increasing time, the energy put into the system by the initial
displacement u0 and velocity v0 is dissipated through the damping term related to γu1ptq, and
the motion then becomes the response of the system to the external force F ptq. We remark that
if there is no damping in the model, the effect of the initial conditions persist for all time (think
about the case when γ “ 0).

Example 3.8.2 (Resonance). Now we further study the general spring-mass model (3.61) with
periodic external force F ptq “ F0 cospωtq. The steady-state solution Uptq can be rewritten as
the following form:

Uptq “ A cospωtq `B sinpωtq “ R cospωt´ δq,

where R “
?
A2 `B2 represents the amplitude and δ satisfying tanpδq “ B{A is a phase

constant. In fact, those constants A, B, R, and δ can be expressed in terms of m, γ, k, F0,
ω0 “

a

k{m, and ω. Note that we can write k “ mω2
0 and recall that ω0 is the natural frequency

of the unforced system in the absence of damping.

Disclaimer: One may skip the following tedious yet simple derivation if you are not
interested in it. Assume the particular solution Uptq “ A cospωtq `B sinpωtq satisfies the
spring-mass system mu2ptq`γu1ptq`kuptq “ F0 cospωtq. Use the method of undetermined
coefficients and make use of the table form (see Table 3.1), we obtain the system of
equations for A and B:

pk ´mω2qA` γωB “ F0,

´γωA` pk ´mω2qB “ 0.

Note that k “ mω2
0. Hence, solving the equations, we obtain that

A “
mpω2

0 ´ ω
2qF0

m2pω2
0 ´ ω

2q2 ` γ2ω2
, B “

γωF0

m2pω2
0 ´ ω

2q2 ` γ2ω2
.

Denote ∆ “
a

m2pω2
0 ´mω

2q2 ` γ2ω2. Then, A “ mpω2
0 ´ω

2qF0{∆
2 and B “ γωF0{∆

2.
Furthermore, using the relation A “ R cos δ and B “ R sin δ, we obtain that

R “
a

A2 `B2 “

c

F 2
0

∆2
“
F0

∆
, cos δ “

A

R
“
mpω2

0 ´ ω
2q

∆
, and sin δ “

B

R
“
γω

∆
.

We can write

R “
F0

∆
, cos δ “

mpω2
0 ´ ω

2q

∆
, and sin δ “

γω

∆
,
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cospωtq sinpωtq

Uptq A B
U 1ptq ωB ´ωA
U2ptq ´ω2A ´ω2B

LHS pk ´mω2qA` γωB pk ´mω2qB ´ γωA
RHS F0 0

Table 3.1: Draft table for the derivation.

where ∆ “
a

m2pω2
0 ´mω

2q2 ` γ2ω2 and ω0 “
a

k{m. We investigate how the amplitude R of
the steady-state oscillation depends on the frequency ω of the external force. By some algebraic
manipulations, we obtain that

Rk

F0
“

»

–

˜

1´

ˆ

ω

ω0

˙2
¸2

` Γ

ˆ

ω

ω0

˙2
fi

fl

´1{2

, where Γ “
γ2

mk
. (3.63)

Observe that the quantity Rk{F0 is the ratio of the amplitude R of the forced response to F0{k,
the static displacement of the spring produced by a force F0. For low frequency regime, that
is ω Ñ 0, it follows that the ratio Rk{F0 Ñ 1 or R Ñ F0{k. At the other extreme, for very
high frequency regime, it implies that R Ñ 0 as ω Ñ 8. At an intermediate value of ω, the
amplitude R may have a maximum.

Disclaimer: One may skip the following tedious yet simple derivation if you are not
interested in it. Note that k “ mω2

0 and ∆ “
a

m2pω2
0 ´mω

2q2 ` γ2ω2. Using the
formula R “ F0{∆, we have

R2 “
F 2
0

∆2
“

F 2
0

pk ´mω2q2 ` γ2ω2

ùñ
R2k2

F 2
0

“
k2

pk ´mω2q2 ` γ2ω2
“

1
´

1´ mω2

k

¯2
`

γ2ω2

k2

“

«

ˆ

1´
mω2

mω2
0

˙2

`
γ2ω2

k ¨mω2
0

ff´1

“

»

–

˜

1´

ˆ

ω

ω0

˙2
¸2

`
γ2

mk
¨

ˆ

ω

ω0

˙2
fi

fl

´1

Thus, we have

Rk

F0
“

»

–

˜

1´

ˆ

ω

ω0

˙2
¸2

` Γ

ˆ

ω

ω0

˙2
fi

fl

´1{2

.

To find this maximum point of R, we can differentiate R with respect to ω and set the result of
ω equal to zero. In this way, we find that the maximum amplitude occurs when ω “ ωmax where

ω2
max “ ω2

0 ´
γ2

2m2
“ ω2

0

ˆ

1´
γ2

2mk

˙

. (3.64)

Note that ωmax ă ω0 and that ωmax is close to ω0 when γ is small. The maximum value of the
amplitude R is

Rmax “
F0

γω0

ˆ

1´
γ2

4mk

˙´1{2

«
F0

γω0

ˆ

1`
γ2

8mk

˙

. (3.65)
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The last expression is an approximation that is only valid when γ2{p4mkq is very small.

Disclaimer: One may skip the following tedious yet simple derivation if you are not
interested in it. Note that R “ F0{∆ with ∆ “

a

m2pω2
0 ´mω

2q2 ` γ2ω2. We can view
R as a function of ω such that

Rpωq “ F0

`

m2pω2
0 ´ ω

2q2 ` γ2ω2
˘´1{2

.

Differentiating R with respect to ω, we obtain that

dR

dω
“ ´

F0

2

`

m2pω2
0 ´ ω

2q2 ` γ2ω2
˘´3{2 “

´2m2pω2
0 ´ ω

2qp2ωq ` 2γ2ω
‰

“ ´
F0

2

´4m2pω2
0 ´ ω

2qω ` 2γ2ω
`

m2pω2
0 ´ ω

2q2 ` γ2ω2
˘3{2

.

If we set R1pωq “ 0, then we should have

´2m2pω2
0 ´ ω

2qω ` γ2ω “ ´ωp2m2ω2 ´ p2m2ω2
0 ´ γ

2qq0.

Solving the above equation for ω (usually we assume that ω ‰ 0 since this is the frequency
of the external force), we obtain that

ω2 “ ω2
0 ´

γ2

2m2
.

We denote ωmax to be the ω in the above equation. Substituting this ωmax back to the
amplitude function Rpωq, we have

Rmax “ Rpωmaxq “ F0

«

m2

ˆ

ω2
0 ´ ω

2
0 `

γ2

2m2

˙2

` γ2ω2
0 ´

γ4

2m2

ff´1{2

“ F0

„

γ4

4m2
` γ2ω2

0 ´
γ4

2m2

´1{2

“ F0

„

γ2ω2
0 ´

γ4

4m2

´1{2

“
F0

γω0

ˆ

1´
γ2

4m2ω2
0

˙´1{2

“
F0

γω0

ˆ

1´
γ2

4mk

˙´1{2

,

using the fact that k “ mω2
0.

If the damping coefficient γ satisfies γ2 ą 2mk, then ωmax given in (3.64) is imaginary; in this
case, we rewrite R1pωq

R1pωq “ ´
2m2F0ω

∆3

ˆ

ω2 `
γ2 ´ 2mk

2m2

˙

ă 0

since ω, F0, m, γ, and ∆ are all positive. Thus, the maximum value of R occurs at ω “ 0 and
R is a monotone decreasing function of ω. Recall that critical damping occurs when γ2 “ 4mk.

Recall that

R “
F0

a

m2pω2
0 ´ ω

2q2 ` γ2ω2
.
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For small γ it follows from (3.65) that Rmax « F0{pγω0q when ω is very close to ω0. For
lightly damped systems, the amplitude R of the forced response when ω is near ω0 is quite large
even for relatively small external forces, and the smaller the value of γ, the more pronounced
is this effect. This phenomenon is known as resonance, and it is often an important design
consideration. Resonance can be either good or bad, depending on the circumstances. It must
be taken very seriously in the design of structures, such as buildings and bridges, where it can
produce instabilities that might lead to the catastrophic failure of the structure. On the other
hand, resonance can be put to good use in the design of instruments, such as seismographs, that
are intended to detect weak periodic incoming signals.

Figure 3.4: Periodic forced vibration with damping.

Figure 3.4 shows some representative curves of Rk{F0 against ω{ω0 for several values of Γ “
γ2{pmkq. We refer to Γ as a damping parameter. It is interesting to look at the limiting case
when Γ Ñ 0. Recall that

Rk

F0
“

»

–

˜

1´

ˆ

ω

ω0

˙2
¸2

` Γ

ˆ

ω

ω0

˙2
fi

fl

´1{2

, where Γ “
γ2

mk
.

It follows that

Rk

F0
“

˜

1´

ˆ

ω

ω0

˙2
¸´1

Ñ `8 as
ω

ω0
Ñ 1.

Hence, the variable Rk{F0 is asymptotic to the vertical line ω{ω0 “ 1, as shown in Figure 3.4.
As the damping in the system increases, the peak response gradually diminishes.

Figure 3.4 also demonstrates the usefulness of dimensionless variables (i.e., quantities with no
units). One can easily verify that each of the quantities Rk{F0, ω{ω0, and Γ has no unit.
The importance of this observation is that the number of significant parameters (m, γ, k, F0,
and ω) in the problem has been reduced to three rather than five that appear in the original
model problem. Thus, only one family of curves shown in Figure 3.4 is needed to describe the
response-versus-frequency behavior of all systems governed by the spring-mass model.

Example 3.8.3 (Forced vibration without damping). We now assume no damping in the spring-
mass and consider the external force F ptq “ F0 cospωtq. The spring-mass equation becomes

mu2ptq ` kuptq “ F0 cospωtq. (3.66)
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The form of the general solution of (3.66) is different, depending on whether the forcing frequency
ω is different from or equal to the natural frequency ω0 “

a

k{m of the unforced system.

1. First consider ω ‰ ω0. In this case, the general solution of (3.66) is

uptq “ c1 cospω0tq ` c2 sinpω0tq `
F0

mpω2
0 ´ ω

2q
cospωtq. (3.67)

The constants c1 and c2 are determined by the initial conditions. The resulting motion is
the sum of two periodic motions of different frequencies (ω0 and ω) and different amplitudes
as well.

In a particular case when up0q “ 0 and u1p0q “ 0 (the mass is initially at rest). Then,
the energy driving the system comes entirely from the external force, with no contribution
from the initial conditions. In this case, the constants c1 and c2 are

c1 “ ´
F0

mpω2
0 ´ ω

2q
and c2 “ 0.

The solution is

uptq “
F0

mpω2
0 ´ ω

2q
pcospωtq ´ cospω0tqq .

This is the sum of two periodic functions of different periods but the same amplitude.
Making use of the trigonometric identities, we can rewrite the solution as follows:

uptq “
2F0

m

`

ω2
0 ´ ω

2
˘

sin

ˆ

1

2
pω0 ´ ωqt

˙

sin

ˆ

1

2
pω0 ` ωqt

˙

.

In the regime when |ω0 ´ ω| is small, the frequency ω0 ` ω is much greater than |ω0 ´ ω|
and thus the term

sin

ˆ

1

2
pω0 ` ωqt

˙

is a rapidly oscillating function compared to the other sine term in the solution. Thus, the
motion if a rapid oscillation with frequency pω0`ωq{2 but with a slowly varying sinusoidal
amplitude

2F0

m

∣∣ω2
0 ´ ω

∣∣ ∣∣∣∣ sin

ˆ

1

2
pω0 ´ ωqt

˙ ∣∣∣∣.
This type of motion possessing a periodic variation of amplitude, exhibits what is called
a beat. For example, such a phenomenon occurs in acoustics when two tuning forks of
nearly equal frequency are excited simultaneously. In this case, the periodic variation
of amplitude is quite apparent to the unaided ear. In electronics, the variation of the
amplitude with time is called amplitude modulation.

2. Let us return to (3.66) and consider the case when ω “ ω0 (also refer to as resonance). In
this case, the frequency of the forcing function is the same as the natural frequency of the
system. In this case, the nonhomogeneous term F0 cospωtq is a solution to the associated
homogeneous equation. In this case, the general solution to (3.66) is

uptq “ c1 cospω0tq ` c2 sinpω0tq `
F0

2mω0
t sinpω0tq.

Consider the case when c1 “ c2 “ 0 (it occurs when up0q “ 0 and u1p0q “ 0). The solution
to the spring-mass system is

uptq “
F0

2mω0
t sinpω0tq
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cospω0tq sinpω0tq t cospω0tq t sinpω0tq

Uptq 0 0 A B
U 1ptq A B ω0B ´ω0A
U2ptq 2ω0B ´2ω0A ´ω2

0A ´ω2
0B

LHS 2mω0B ´2mω0A pk ´mω2
0qA “ 0 pk ´mω2

0qB “ 0
RHS F0 0 0 0

Table 3.2: Draft table for the derivation.

with amplitude as large as t. It becomes unbounded as t Ñ `8. In reality, unbounded
oscillations do not occur, because the spring cannot stretch infinitely far. Moreover, as
soon as u becomes large, the spring-mass model is no longer valid, since the assumption
that the spring force depends linearly on the displacement requires that u be small. As we
have seen, if damping is included in the model. the predicted motion remains bounded;
however, the response to the input function F0 cospωtq may be quite large if the damping
is small and ω is close to ω0.

Disclaimer: One may skip the following tedious yet simple derivation if you are not inter-
ested in it. Here we derive the particular solution to the equation mu2`ku “ F0 cospω0tq.
Note that any linear combination of cospω0tq and sinpω0tq satisfies the associated homo-
geneous equation mu2 ` ku “ 0 in this case. Hence, we assume the particular solution
Uptq has the form

Uptq “ At cospω0tq `Bt sinpω0tq.

Using the table form (see Table 3.2), we obtain

2mω0B “ F0, ´2mω0A “ 0 ùñ A “ 0, B “
F0

2mω0
.

Hence, the particular solution is

Uptq “
F0

2mω0
t sinpω0tq.
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3.9 Exercises

1. Solve the following given initial-value problems:

• y2 ` y1 ´ 2y “ 0, yp0q “ 1, y1p0q “ 1.

• 4y2 ´ y “ 0, yp´2q “ 1, y1p´2q “ ´1.

• 3y2 ´ y1 ` 2y “ 0, yp0q “ 2, y1p0q “ 0.

• y2 ´ 2y1 ` 5y “ 0, ypπ{2q “ 0, y1pπ{2q “ 2.

• 4y2 ` 4y1 ` y “ 0, yp0q “ 1, y1p0q “ 2.

• 9y2 ´ 12y1 ` 4y “ 0, yp0q “ 2, y1p0q “ ´1.

2. Find the Wronskian W ry1, y2; ts of the given pair of functions: y1ptq “ cos2 t, y2ptq “
1` cosp2tq.

3. Verify that y1ptq “ t2 and y2ptq “ t´1 are two solutions of the differential equation

t2y2 ´ 2y “ 0 t ą 0.

Compute also the Wronskian of y1 and y2 at any point t.

4. Use the method of reduction of order to find a second solution y2ptq of the given differential
equation:

t2y2 ´ 4ty1 ` 6y “ 0, y1ptq “ t2.

Hint: assume y2ptq “ vptqy1ptq and substitute y2 into the equation, then figure out vptq.

5. Using the method of undetermined coefficients, find a particular solution Y ptq of the fol-
lowing differential equations:

• y2 ´ 2y1 ´ 3y “ 3e2t.

• y2 ` y1 ` 4y “ et ´ e´t.

• y2 ` 2y1 “ 3` 4 sinp2tq. Hint: for y2 ` 2y1 “ 3, assume the particular solution is of
the form Y ptq “ At.

• y2`y “ t cosp2tq. Hint: assume Y ptq “ At cosp2tq`Bt sinp2tq`C cosp2tq`D sinp2tq
with A,B,C,D to be determined.

6. Using the method of variation of parameters, find the general solution of the following
differential equations:

• y2 ` y “ tanptq (0 ă t ă π{2).

• y2 ` 9y “ 9 sec2p3tq (0 ă t ă π{6).

• y2 ` 4y1 ` 4y “ t´2e´2t.

7. Consider a spring-mass system without damping and external force. The spring constant
is k “ 60 lb/ft (i.e., a mass weighting 10 lb stretches a spring 1{6 ft) and the mass is
m “ 10{32 lb ¨ s2{ft. Initially the mass is displaced an additional 1{6 ft and is then set in
motion with initial upward velocity of 1 ft/s (i.e. up0q “ 1{6 ft and u1p0q “ ´1 ft/s).

(a) Write down the differential equation describing the spring-mass system without damp-
ing. Denote uptq the position of the mass at any later time.

(b) Solve the system written in (a) with the given initial conditions.
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(c) What is the natural frequency ω0 “
a

k{m? What is the unit of the natural fre-
quency? Determine the period Td of the system.

(d) If we write the solution uptq “ R cospω0t ´ δq, determine the amplitude R and the
phase δ of the motion (express δ in radian).

When reporting the quantities, don’t forget to include their units.

8. Let F1ptq and F2ptq be two different external forces such that

F1ptq “

"

F0 sin
`

t
2

˘

0 ď t ď 2π,
0 t ą 2π,

and F2ptq “

$

&

%

F0t 0 ď t ď π,
F0p2π ´ tq π ă t ď 2π,
0 t ą 2π.

Here, F0 is a positive constant.

(a) Let u1 be the solution to the initial-value problem

u2 ` u “ F1ptq, up0q “ 0, u1p0q “ 0.

Find the formula of u1.

(b) Let u2 be the solution to the initial-value problem

u2 ` u “ F2ptq, up0q “ 0, u1p0q “ 0.

Find the formula of u2.

(c) Plot the solution curves for u1 and u2 in the same frame.

Hint: treat each time interval separately, and match the solutions in the different intervals
by requiring u and u1 to be continuous functions of t.
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Exercise

There are 4 questions in this assignment. Answer all. Please write down your name and UIN.
The deadline is 11:59 pm (CDT), Oct 21 2022. Remark: Q1 is for Section 3.5. Although
it is already covered in Exam 1, the Final Exam is cumulative. Q4 is optional with 5 bonus
points if solved fully corrected.

1. Using the method of undetermined coefficients, find a particular solution Y ptq of the fol-
lowing differential equations:

• y2 ` 2y1 “ 3` 4 sinp2tq. Hint: for y2 ` 2y1 “ 3, assume the particular solution is of
the form Y ptq “ At.

• y2`y “ t cosp2tq. Hint: assume Y ptq “ At cosp2tq`Bt sinp2tq`C cosp2tq`D sinp2tq
with A,B,C,D to be determined.

2. Using the method of variation of parameters, find the general solution of the following
differential equations:

• y2 ` 9y “ 9 sec2p3tq (0 ă t ă π{6).

• y2 ` 4y1 ` 4y “ t´2e´2t.

3. Consider a spring-mass system without damping and external force. The spring constant
is k “ 60 lb/ft (i.e., a mass weighting 10 lb stretches a spring 1{6 ft) and the mass is
m “ 10{32 lb ¨ s2{ft. Initially the mass is displaced an additional 1{6 ft and is then set in
motion with initial upward velocity of 1 ft/s (i.e. up0q “ 1{6 ft and u1p0q “ ´1 ft/s).

(a) Write down the differential equation describing the spring-mass system without damp-
ing. Denote uptq the position of the mass at any later time.

(b) Solve the system written in (a) with the given initial conditions.

(c) What is the natural frequency ω0 “
a

k{m? What is the unit of the natural fre-
quency? Determine the period T of the system.

(d) If we write the solution uptq “ R cospω0t ´ δq, determine the amplitude R and the
phase δ of the motion (express δ in radian).

Remark: When reporting the quantities, don’t forget to include their units.
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4. (Optional, 5 bonus points) This problem studies the spring-mass model without damping
term but external force. The external force only lasts for finite time from 0 to 2π. Let
F1ptq and F2ptq be two different external forces such that

F1ptq “

"

F0 sin
`

t
2

˘

0 ď t ď 2π,
0 t ą 2π,

and F2ptq “

$

&

%

F0t 0 ď t ď π,
F0p2π ´ tq π ă t ď 2π,
0 t ą 2π.

Here, F0 is a positive constant.

(a) Let u1 be the solution to the initial-value problem

u2 ` u “ F1ptq, up0q “ 0, u1p0q “ 0.

Find the formula of u1.

(b) Let u2 be the solution to the initial-value problem

u2 ` u “ F2ptq, up0q “ 0, u1p0q “ 0.

Find the formula of u2.

(c) Plot the solution curves for u1 and u2 in the same frame.

Hint: treat each time interval separately, and match the solutions in the different intervals
by requiring u and u1 to be continuous functions of t.
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Reference Solutions

1. (a) Let y1 be a particular solution to y2 ` 2y1 “ 3 and y2 be a particular solution to
y2 ` 2y1 “ 4 sinp2tq, respectively. The desired Y ptq is the sum of y1 and y2: i.e., Y ptq “
y1ptq ` y2ptq. Assume that

y1ptq “ At`Bt2 ùñ y11ptq “ A` 2Bt, y21ptq “ 2B.

Hence, we have

y21 ` 2y11 “ p2B ` 2Aq ` 4Bt “ 3 ùñ 4B “ 0, 2pB `Aq “ 3.

Hence, we have A “ 3{2 and B “ 0. We have y1ptq “ 3t{2. For y2, we assume that

y2ptq “ C cosp2tq`D sinp2tq ùñ y11ptq “ 2D cosp2tq´2C sinp2tq, y22ptq “ ´4C cosp2tq´4D sinp2tq.

Substituting these expression back to the equation, we have

p´4C ` 4Dq cosp2tq ` p´4C ´ 4Dq sinp2tq “ 4 sinp2tq ùñ C ´D “ 0, C `D “ ´4.

Thus, we have C “ ´2 and D “ ´2. That is, we have y2ptq “ ´2 cosp2tq ´ 2 sinp2tq.
Consequently, we have

Y ptq “ y1ptq ` y2ptq “
3

2
t´ 2 cosp2tq ´ 2 sinp2tq.

(b) For y2 ` y “ t cosp2tq, we assume that Y ptq “ At cosp2tq ` Bt sinp2tq ` C cosp2tq `
D sinp2tq. See Table 3.3 for the derivation.

t cosp2tq t sinp2tq cosp2tq sinp2tq

Y ptq A B C D
Y 1ptq 2B ´2A A` 2D B ´ 2C
Y 2ptq ´4A ´4B 4B ´ 4C ´4A´ 4D

LHS “ Y 2 ` Y ´3A ´3B 4B ´ 3C ´4A´ 3D
RHS 1 0 0 0

Table 3.3: Draft table for the derivation.

Hence, we have

´3A “ 1, ´3B “ 0, 4B ´ 3C “ 0, ´4A´ 3D “ 0

and therefore, A “ ´1{3, B “ C “ 0, and D “ 4{9. The particular solution Y ptq reads

Y ptq “ ´
1

3
t cosp2tq `

4

9
sinp2tq.

2. (a) One can show that y1ptq “ cosp3tq and y2ptq “ sinp3tq form a fundamental set of
solutions to the homogeneous equation y2 ` 9y “ 0. Thus, we can assume that the
particular solution of y2 ` 9y “ 9 sec2p3tq has the form

yptq “ u1ptq cosp3tq ` u2ptq sinp3tq.

Hence, u11 and u12 satisfy

u11ptq cosp3tq ` u12ptq sinp3tq “ 0,

´3u11ptq sinp3tq ` 3u12ptq cosp3tq “ 9 sec3p3tq.
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Therefore, we have

u11ptq “ ´3
sinp3tq

cos2p3tq
and u12ptq “

3

cosp3tq
.

Integrating u11 and u12 respect to t, we have

u1ptq “ ´3

ż

sinp3tq

cos2p3tq
dt “

ż

d cosp3tq

cos2p3tq
“ ´

1

cosp3tq
` c1,

u2ptq “ 3

ż

dt

cosp3tq
“ log

ˆ

sinp1.5tq ` cosp1.5tq

cosp1.5tq ´ sinp1.5tq

˙

` c2.

Hence, the general solution is

yptq “ c1 cosp3tq ` c2 sinp3tq ´ 1` sinp3tq log

ˆ

sinp1.5tq ` cosp1.5tq

cosp1.5tq ´ sinp1.5tq

˙

.

(a) One can show that y1ptq “ e´2t and y2ptq “ te´2t form a fundamental set of solutions
to the homogeneous equation y2 ` 4y1 ` 4y “ 0. Thus, we can assume that the particular
solution of y2 ` 4y1 ` 4y “ t´2e´2t has the form

yptq “ u1ptqe
´2t ` u2ptqte

´2t.

Hence, u11 and u12 satisfy

u11ptq ` tu
1
2ptq “ 0,

´2u11ptq ` p1´ 2tqu12ptq “ t´2.

Therefore, we have

u11ptq “ ´
1

t
and u12ptq “

1

t2
.

Integrating u11 and u12 respect to t, we have

u1ptq “ ´ logptq ` c1,

u2ptq “ ´
1

t
` c2.

Hence, the general solution is

yptq “ c1e
´2t ` c2te

´2t ´ logptqe´2t ´ e´2t “ c̃1e
´2t ` c2te

´2t ´ logptqe´2t.

3. (a) The differential equation is mu2ptq ` kuptq “ 0 where m “ 5{16 lb ¨ s2/ft and k “ 60
lb/ft.
(b) The initial condition is up0q “ 1{6 ft and u1p0q “ ´1 ft/s. Hence, the system is

5

16
u2ptq ` 60uptq “ 0, up0q “

1

6
, u1p0q “ ´1

with appropriate units. Hence, we have

uptq “ A cos
´

8
?

3t
¯

`B sin
´

8
?

3t
¯

.

Using the initial conditions, we have A “ 1{6 and B “ ´1. Hence, we have

uptq “
1

6
cos

´

8
?

3t
¯

´ sin
´

8
?

3t
¯

.
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(c) The natural frequency ω0 “
a

k{m “ 8
?

3 has the unit ft/s. The period of the system
is T “

?
3π{12 s.

(d) Finally, the amplitude R satisfies

R “
a

A2 `B2 “

?
37

6
ft

and the phase δ satisfies

tan δ “
B

A
“ ´6 ùñ δ « ´1.40565

in radian.
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3.10 Suggested Practice Problems

1. The differential equation (with solution y “ ypxq)

y2 ` δpxy1 ` yq “ 0,

where δ is a constant, arises in the study of turbulent flow of a uniform stream past a
circular cylinder. Verify that y1pxq “ expp´δx2{2q is one solution, and then find the
general solution in the form of an integral.

Solution. By direct computation, we have

y11pxq “ ´δxy1pxq, y21pxq “ ´δy1 ` δ
2x2y1pxq.

Then, we have

y21 ` δpxy
1
1 ` yq “ ´δy1 ` δ

2x2y1 ´ δ
2x2y1 ` δy1 “ 0.

We showed that y1 did solve the equation. We use method of reduction of order to figure
out y2 “ vy1. Substituting y2 “ vy1 we have

v2y1 ` 2v1y11 ` vy
2
1 ` δxpv

1y1 ` vy
1
1q ` δvy1 “ 0

ùñ v2y1 ` p2y
1
1 ` δxy1qv

1 “ 0

ùñ v2y1 ´ δxy1v
1 “ 0 ùñ v2 ´ δxv1 “ 0.

If we set w “ v1, then we have

w1 “ δxw ùñ wpxq “ C1 exppδx2{2q ùñ vpxq “ C1

ż x

t0

exp

ˆ

δt2

2

˙

dt` C2,

where C1 and C2 are arbitrary constants. Hence, the general solution of the equation is

ypxq “ C1

ż x

t0

exp

ˆ

δpt2 ´ x2q

2

˙

dt` C2 exp

ˆ

´
δx2

2

˙

.

2. An equation of the form

t2y2ptq ` αty1ptq ` βyptq “ 0, t ą 0 (3.68)

where α and β are real constants, is called an Euler equation.

(a) Let x “ ln t and calculate y1ptq and y2ptq in terms of dy{dx and d2y{dx2.

(b) Use the result of part (a) to transform (3.68) into

d2y

dx2
` pα´ 1q

dy

dx
` βypxq “ 0. (3.69)

Observe that (3.69) has constant coefficients. If y1pxq and y2pxq form a fundamental
set of solutions of (3.69), then y1pln tq and y2pln tq form a fundamental set of solutions
of (3.68).

(c) Let α “ β “ 1. Find the general solution of the corresponding Euler equation.
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Solution. We write x “ ln t and we obtain t “ ex and dt{dx “ ex.

(a) Using the chain rule, we have

dy

dx
“
dy

dt

dt

dx
“ ex

dy

dt
“ t

dy

dt

and
d2y

dx2
“

d

dx

ˆ

dy

dx

˙

“
d

dt

ˆ

dy

dx

˙

dt

dx
“

ˆ

dy

dt
` t

d2y

dt2

˙

t “ t2
d2y

dt2
` t

dy

dt
.

(b) Using the results of part (a), the equation (3.68) becomes

ˆ

d2y

dx2
´
dy

dx

˙

` α
dy

dx
` βypxq “ 0.

That is the equation (3.69), a constant coefficients second order differential equation.

(c) Let α “ β “ 1. The equation (3.69) becomes

d2y

dx2
` ypxq “ 0 ùñ ypxq “ c1 cospxq ` c2 sinpxq.

Therefore, the general solution of the Euler equation (in terms of t) is

yptq “ c1 cospln tq ` c2 sinpln tq.

3. Consider linear second order equation

y2ptq ` pptqy1ptq ` qptqyptq “ 0. (3.70)

It can be put in a more suitable form for finding a solution by making a change of the
independent variable. We explore these ideas in this problem. In particular, we determine
conditions under which the equation (3.70) can be transformed into a differential equation
with constant coefficients. Let x “ uptq be the new independent variable, with the relation
between x and t be specified later.

(a) Show that

dy

dt
“
dx

dt

dy

dx
,

d2y

dt2
“

ˆ

dx

dt

˙2 d2y

dx2
`
d2x

dt2
dy

dx
.

(b) Show that the equation (3.70) becomes

ˆ

dx

dt

˙2 d2y

dx2
`

ˆ

d2x

dt2
` pptq

dx

dt

˙

dy

dx
` qptqy “ 0. (3.71)

Solution.



Chapter 5

Series Solutions of Second-Order
Linear Equations

To deal with the much larger class of equations that have variable coefficients, it is necessary
to extend our search for solutions beyond the familiar elementary functions of calculus. The
principal tool that we need is the representation of a given function by a power series. The basic
idea is similar to that in the method of undetermined coefficients: we assume that the solutions
of a given differential equation have power series expansions, and then we attempt to determine
the coefficients so as to satisfy the differential equation.

5.1 Review of Power Series

Keywords: convergence, absolute convergence, ratio test, radius of convergence,
conditional convergence,

In this section, we briefly review the pertinent results about power series that we need.

1. A power series
8
ÿ

n“0

anpx´ x0q
n is said to converge at a point x if the limit

lim
mÑ8

m
ÿ

n“0

anpx´ x0q
n

exists for that x. The series certainly converges for x “ x0; it may converge for all x, or it
may converge for some values of x and not for others.

2. The power series
8
ÿ

n“0

anpx´ x0q
n is said to converge absolutely at a point x if the associated

power series
8
ÿ

n“0

|anpx´ x0qn|

converges. It can be shown that if the power series converges absolutely, then the power
series also converges; however, the converse is not necessarily true.

3. Ratio test: If an ‰ 0 and if for a fixed value of x,

lim
nÑ8

∣∣∣∣an`1px´ x0qn`1anpx´ x0qn

∣∣∣∣ “ |x´ x0| lim
nÑ8

∣∣∣∣an`1an

∣∣∣∣ “ |x´ x0|L,
91
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then the power series converges absolutely at that value of x if |x´ x0|L ă 1 and diverges
if |x´ x0|L ą 1. If |x´ x0|L “ 1, the ratio test is inconclusive.

Example 5.1.1 (Application of ratio test). Consider the power series

8
ÿ

n“1

p´1qn`1npx´ 2qn with an “ p´1qn`1n and x0 “ 2.

The ratio test gives

lim
nÑ8

∣∣∣∣an`1px´ x0qn`1anpx´ x0qn

∣∣∣∣ “ |x´ 2| lim
nÑ8

∣∣∣∣n` 1

n

∣∣∣∣ “ |x´ 2| .

This series converges absolutely for |x´ 2| ă 1 (i.e. 1 ă x ă 3), and diverges for |x´ 2| ą 1.
The values of x corresponding to |x´ 2| “ 1 are x “ 1 and x “ 3. For x “ 1, the n-th term of
the series reads

p´1qn`1np´1qn “ p´1q2n`1n “ ´n,

which does not approach 0 as n Ñ 8. Similarly when x “ 3 the n-th term of the series does
not approach 0 as nÑ8. Hence, the power series diverges for x ď 1 and x ě 3.

4. If the power series
8
ÿ

n“0

anpx´ x0q
n converges x “ x1, it converges absolutely for any x

satisfying |x´ x0| ă r for r “ |x1 ´ x0|; and if the series diverges at x “ x1, it diverges
for any x satisfying |x´ x0| ą r with r “ |x1 ´ x0|.

5. Typically for a power series, there is a positive number ρ called radius of convergence, such

that the power series
8
ÿ

n“0

anpx´ x0q
n converges absolutely for |x´ x0| ă ρ and diverges

for |x´ x0| ą ρ. The interval px0 ´ ρ, x0 ` ρq is called the interval of convergence of the
power series. See Figure 5.1 below. It is important to note that the series may either
converge or diverge when |x´ x0| “ ρ.

Figure 5.1: The interval of convergence of a power series.

Example 5.1.2 (Determine radius of convergence). Find the radius of convergence of the power
series

8
ÿ

n“1

px` 1qn

n2n
.

Solution. We first apply the ratio test:

lim
nÑ8

∣∣∣∣ px` 1qn`1

pn` 1q2n`1
¨

n2n

px` 1qn

∣∣∣∣ “ |x` 1|
2

lim
nÑ8

n

n` 1
“
|x` 1|

2
.
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Thus, the series converges absolutely for |x` 1| ă 2, that is for ´3 ă x ă 1, and diverges
for |x` 1| ą 2. The radius of convergence of the power series is ρ “ 2. Finally, we check the
end-points of the interval of convergence. At x “ 1, the series becomes the harmonic series

8
ÿ

n“1

1

n

which diverges. At x “ ´3, we have

8
ÿ

n“1

p´3` 1qn

n2n
“

8
ÿ

n“1

p´1qn

n
.

Recognizing this as the alternating harmonic series, we recall that it converges but does not
converge absolutely. The power series is said to converge conditionally at x “ ´3. To summarize,
the given power series converges for ´3 ď x ă 1 and diverges otherwise. It converges absolutely
for ´3 ă x ă 1 and has a radius of convergence 2.

From now on, we assume that
8
ÿ

n“0

anpx´ x0q
n and

8
ÿ

n“0

bnpx´ x0q
n converge to fpxq and gpxq,

respectively, for |x´ x0| ă ρ with ρ ą 0. Then,

6. The two series can be added or subtracted term by term. That is,

fpxq ˘ gpxq “
8
ÿ

n“0

pan ˘ bnqpx´ x0q
n.

The resulting series converges at least for |x´ x0| ă ρ.

7. The two series can be formally multiplied, and we have

fpxqgpxq “

˜

8
ÿ

n“0

anpx´ x0q
n

¸˜

8
ÿ

n“0

bnpx´ x0q
n

¸

“

8
ÿ

n“0

cnpx´ x0q
n,

where for any index n

cn “ a0bn ` a1bn´1 ` ¨ ¨ ¨ ` anb0.

The resulting series converges at least for |x´ x0| ă ρ. Further if b0 ‰ 0, then gpx0q ‰ 0,
and the series for fpxq can be formally divided by the series for gpxq. That is,

fpxq

gpxq
“

8
ÿ

n“0

dnpx´ x0q
n.

In most cases the coefficients dn can be most easily obtained by equating coefficients in
the equivalent relation

8
ÿ

n“0

anpx´ x0q
n “

˜

8
ÿ

n“0

dnpx´ x0q
n

¸˜

8
ÿ

n“0

bnpx´ x0q
n

¸

.

In the case of division, the radius of convergence of the resulting power series may be less
than the original radius of convergence ρ.
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8. The limit function f of the power series is continuous and has derivatives of all orders
of |x´ x0| ă ρ. Moreover, f 1, f2, and any high order derivatives can be computed by
differentiating the series term by term; that is,

f 1pxq “ a1 ` 2a2px´ x0q ` ¨ ¨ ¨ ` nanpx´ x0q
n´1 ` ¨ ¨ ¨ “

8
ÿ

n“1

nanpx´ x0q
n´1.

f2pxq “ 2a2` 6a3px´x0q` ¨ ¨ ¨`npn´ 1qanpx´x0q
n´2`¨ ¨ ¨ “

8
ÿ

n“2

npn´ 1qanpx´x0q
n´2,

and so forth, and each of the series converges absolutely for |x´ x0| ă ρ.

9. The series with the value of an given by

an “
f pnqpx0q

n!
,

where f pnq is the n-th order derivative of f , is called the Taylor series for the function f
at x “ x0.

10. If
8
ÿ

n“0

anpx´ x0q
n “

8
ÿ

n“0

bnpx´ x0q
n for each x in some open interval with center x0, then

an “ bn for all n. In particular, if
8
ÿ

n“0

anpx´ x0q
n “ 0 for each such x, then a0 “ a1 “

¨ ¨ ¨ “ an “ ¨ ¨ ¨ “ 0.

A function f that has a Taylor series expansion at x “ x0

fpxq “
8
ÿ

n“0

f pnqpx0q

n!
px´ x0q

n,

with a radius of convergence ρ ą 0, is said to be analytic at x “ x0. All of the familiar functions
of calculus are analytic except perhaps at certain easily recognized points. For example, sinx
and ex are analytic everywhere, 1{x is analytic except at x “ 0, and tanx is analytic except
at odd multiplies of π{2. According to statements 6 and 7 above, if f and g are analytic at
x0, then f ˘ g, f ¨ g, and f{g (provided that gpx0q ‰ 0) are also analytic at x “ x0. In many
respects the natural context for the use of power series is the complex plane. The methods and
results of this chapter nearly always can be directly extended to differential equations in which
the independent and dependent variables are complex-valued.

We remark that the index of summation in an infinite series is a dummy parameter just as the
integration variable in a definite integral is a dummy variable. Thus, it is immaterial which
letter is used for the index of summation. For example, we have

8
ÿ

n“0

2nxn

n!
“

8
ÿ

n“0

2jxj

j!
.

Just as we make changes of the variable of integration in a definite integral, we find it convenient
to make changes of summation indices in calculating series solutions of differential equations.

Example 5.1.3. Write
8
ÿ

n“2

anx
n as a series whose first term corresponds to n “ 0 rather than

n “ 2.
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Solution. Let m “ n´ 2; then n “ m` 2, and n “ 2 corresponds to m “ 0. Hence, we have

8
ÿ

n“2

anx
n “

8
ÿ

m“0

am`2x
m`2.

Here, m is just a dummy parameter and we could write

8
ÿ

m“0

am`2x
m`2 “

8
ÿ

n“0

an`2x
n`2.

Example 5.1.4. Write
8
ÿ

n“2

pn` 2qpn` 1qanx
n´2 as a series whose generic term involves px´x0q

n

rather than px´ x0q
n´2.

Solution. Let m “ n´ 2; then n “ m` 2, and n “ 2 corresponds to m “ 0. Hence, we have

8
ÿ

n“2

pn` 2qpn` 1qanpx´ x0q
n´2 “

8
ÿ

m“0

pm` 4qpm` 3qam`2px´ x0q
m.

Here, m is just a dummy parameter and we could write

8
ÿ

m“0

pm` 4qpm` 3qam`2px´ x0q
m “

8
ÿ

n“0

pn` 4qpn` 3qan`2px´ x0q
n.

Example 5.1.5. Assume that
8
ÿ

n“1

nanx
n´1 “

8
ÿ

n“0

anx
n

for all x. Determine what this implies about the coefficients an’s.

Solution. By shifting the indices on the left-hand side of the above equation, we get

8
ÿ

n“0

pn` 1qan`1x
n “

8
ÿ

n“0

anx
n

for all values of x. That is, we have

pn` 1qan`1 “ an ðñ an`1 “
an
n` 1

for all n P N. That means,

a1 “ a0, a2 “
a1
2
“
a0
2
“
a0
2!
, a3 “

a2
3
“
a0
6
“
a0
3!
,

and in general, we have

an “
a0
n!
,

for all n P N (recall that 0! “ 1). Hence, we have

8
ÿ

n“0

anx
n “

8
ÿ

n“0

a0
n!
xn “ a0

8
ÿ

n“0

1

n!
xn “ a0e

x

recalling that

ex “
8
ÿ

n“0

1

n!
xn

for all values of x.



96 CHAPTER 5. SERIES SOLUTIONS OF SECOND-ORDER LINEAR EQUATIONS

5.2 Series Solutions Near an Ordinary Point: Part 1

Keywords: Ordinary points, Singular points

In this section, we introduce how to use power series to solve and represent solutions to some
differential equations. So far we studied methods of solving second-order linear differential
equations with constant coefficients in Chapter 3. We now consider methods of solving second-
order linear equations when the coefficients are functions of the independent variable, i.e.,

P ptqy2ptq `Qptqy1ptq `Rptqy “ 0, (5.1)

since the procedure for the corresponding nonhomogeneous equation is similar and can be ob-
tained via the method of variation of parameters.

In many applications, P ptq, Qptq, and Rptq are polynomials of t. However, as we will see, the
method of solution is also applicable when P , Q, and R are general analytic functions. For
the present, suppose that they are all polynomials and that there is no factor px ´ cq that is
common to all three of them. If there is such a common factor px´ cq, then divide it out before
proceeding. Suppose that we wish to solve (5.1) in the neighborhood of a point x0. The solution
in an interval containing x0 is closely associated with the behavior of P in that interval.

A point x0 such that P px0q ‰ 0 is called an ordinary point of the equation. If P is continuous, it
follows that there is an open interval containing x0 in which P pxq is never zero in that interval
(denoted as I), and we can divide (5.1) by P pxq to obtain

y2ptq ` pptqy1ptq ` qptqy “ 0, (5.2)

where pptq “ Qptq{P ptq and qptq “ Rptq{P ptq are continuous functions on the same interval I.

On the other hand, if P px0q “ 0, then x0 is called a singular point of equation (5.1). In this
case, since px´ x0q is not a common factor of P , Q, and R, at least one of Qpx0q and Rpx0q is
not zero. We discuss the case of solution near a singular point in later sections.

Instead of using the independent variable symbol t, we use x in this chapter. We now take up
the problem of solving (5.1) in the neighborhood of an ordinary point x0. This time, we look
for solutions ypxq of the following form

ypxq “ a0 ` a1px´ x0q ` ¨ ¨ ¨ ` anpx´ x0q
n ` ¨ ¨ ¨ “

8
ÿ

n“0

anpx´ x0q
n (5.3)

and assume this series converges in the interval |x´ x0| ă ρ for some number ρ ą 0. While
at first sight it may appear unattractive to seek a solution in the form of power series, this is
actually a convenient and useful form for a solution. Within the convergent intervals, power
series behave very much like polynomials and are easy to manipulate both analytically and
numerically. Indeed, even if we can obtain a solution in terms of elementary functions, such as
exponential or trigonometric functions, we are likely to need a power series or some equivalent
expression if we want to evaluate the solution numerically or to plot its graph.

To determine an in (5.3), simply substitute the series (5.3) and its derivatives in the equation
(5.1) and equating the coefficients for both left- and right-hand sides.

Example 5.2.1. Find a series solution of the equation

y2 ` y “ 0, ´8 ă x ă 8.

Solution. As we know, the solution to this equation can be expressed as linear combination of
sinx and cosx. In fact, we do not need the power series method to solve it. However, this
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example illustrates the use of power series in a relatively simple case. In this case, P pxq “ 1 ‰ 0
for all x. Hence, every point in the real axis is an ordinary point of the equation.

Let x0 “ 0. We look for a solution in the form of power series at x “ 0 as follows:

ypxq “ a0 ` a1x` a2x
2 ` a3x

3 ` ¨ ¨ ¨ “

8
ÿ

n“0

anx
n

and assume the series converges in some interval |x| ă ρ. Differentiating the above expression,
we get

y1pxq “ a1 ` 2a2x` 3a3x
2 ` ¨ ¨ ¨ “

8
ÿ

n“0

pn` 1qan`1x
n,

y2pxq “ 2a2 ` 6a3x` ¨ ¨ ¨ “
8
ÿ

n“0

pn` 2qpn` 1qan`2x
n.

Substituting back to the equation, we get

8
ÿ

n“0

rpn` 2qpn` 1qan`2 ` ansx
n “ 0.

For this equation to be satisfied for all x, the coefficient of each power of x must be zero; and
we conclude that

pn` 2qpn` 1qan`2 ` an “ 0 for all n “ 0, 1, 2, 3, ¨ ¨ ¨ .

This is a recurrence relation in the sense that if we know a0 and a1 in advance, all the coefficients
can be obtained in terms of a0 and a1. For example, we have

a2 “ ´
a0

1 ¨ 2
, a4 “ ´

a2
3 ¨ 4

“ p´1q2
a0
4!
, a6 “ ´

a4
5 ¨ 6

“ p´1q3
a1
6!
,

and in general, we have

a2k “ p´1qk
a0
p2kq!

for k “ 1, 2, 3, ¨ ¨ ¨ .

Similarly, we have

a3 “ ´
a1

3 ¨ ¨ ¨ 2
, a5 “ ´

a3
5 ¨ 4

“ p´1q2
a1
5!
, a7 “ ´

a5
7 ¨ 6

“ p´1q3
a0
7!
,

and in general, we have

a2k`1 “ p´1qk
a1

p2k ` 1q!
for k “ 1, 2, 3, ¨ ¨ ¨ .

Then, the solution y can be represented as

ypxq “ a0`a1x´
a0
2!
x2´

a1
3!
x3`

a0
4!
x4`

a1
5!
x5`¨ ¨ ¨ “ a0

˜

8
ÿ

n“0

p´1qn

p2nq!
x2n

¸

`a1

˜

8
ÿ

n“0

p´1qn

p2n` 1q!
x2n`1

¸

.

We denote

y1pxq “
8
ÿ

n“0

p´1qn

p2nq!
x2n and y2pxq “

8
ÿ

n“0

p´1qn

p2n` 1q!
x2n`1.

Using the ratio test, we can show that y1 and y2 converges for all x. For example, for y1 we have

lim
nÑ8

∣∣∣∣ p´1qn`1

p2n` 2q!x2n`2
¨

p2nq!

p´1qnx2n

∣∣∣∣ “ lim
nÑ8

x2

p2n` 2qp2n` 1q
“ 0.
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That is, the series y1 converges for all values of x. Similarly, y2 converges for all values of x.
Indeed, the series for y1pxq is exactly the Taylor series for cosx at x “ 0 while y2 is the Taylor
series of sinx at x “ 0. Hence, we recover the solution to be

y “ a0 cosx` a1 sinx.

Notice that no conditions are imposed on a0 and a1; hence they are arbitrary. They can be
determined by the initial conditions for yp0q and y1p0q.

Example 5.2.2. Find a series solution in powers of x of Airy’s equation

y2 ´ xy “ 0, ´8 ă x ă 8.

Solution. For this equation, we have P pxq “ 1 and hence every point is an ordinary point. We
assume that the solution has the power series form as follows:

ypxq “
8
ÿ

n“0

anx
n

and the series converges in some interval |x| ă ρ. As an the previous example, we have

y2pxq “
8
ÿ

n“0

pn` 2qpn` 1qan`2x
n.

As a result, the differential equation become

8
ÿ

n“0

“

pn` 2qpn` 1qan`2x
n ´ anx

n`1
‰

“ 0.

Rewriting the left-hand side of the equation above, we get

2a2 `
8
ÿ

n“1

rpn` 2qpn` 1qan`2x
n ´ an´1sx

n “ 0.

For this equation to be satisfied for all x in some interval, the coefficients of like power of x must
be zero; hence a2 “ 0, and we obtain the recurrence relation

an`2 “
an´1

pn` 2qpn` 1q
for all n “ 1, 2, 3, ¨ ¨ ¨ .

From the recursion above, if we are given a0, then we know a3, a6, a9, and so on. Similarly, if
we know a1, then we know a4, a7, and so on. Finally we have

a2 “ 0 ùñ a5 “ a8 “ ¨ ¨ ¨ “ a3n´3 “ 0 for all n “ 1, 2, ¨ ¨ ¨ , .

Hence, we can write

a3 “
a0

3 ¨ 2
, a6 “

a3
6 ¨ 5

“
a0

6 ¨ 5 ¨ 3 ¨ 2
, a9 “

a6
9 ¨ 8

“
a0

2 ¨ 3 ¨ 5 ¨ 6 ¨ 8 ¨ 9
,

and this suggest the general formula

a3n “
a0

2 ¨ 3 ¨ 5 ¨ 6 ¨ ¨ ¨ p3n´ 1qp3nq
for any n “ 1, 2, ¨ ¨ ¨ , .
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Similarly, we have

a3n`1 “
a1

3 ¨ 4 ¨ 6 ¨ 7 ¨ ¨ ¨ p3nqp3n` 1q
for any n “ 1, 2, ¨ ¨ ¨ , .

Therefore, the general solution of Airy’s equation is

ypxq “ a0

„

1`
x3

2 ¨ 3
`

x6

2 ¨ 3 ¨ 5 ¨ 6
` ¨ ¨ ¨ `

x3n

2 ¨ 3 ¨ ¨ ¨ p3n´ 1qp3nq
` ¨ ¨ ¨



` a1

„

x`
x4

3 ¨ 4
`

x7

3 ¨ 4 ¨ 6 ¨ 7
` ¨ ¨ ¨ `

x3n`1

3 ¨ 4 ¨ ¨ ¨ p3nqp3n` 1q
` ¨ ¨ ¨



.

(5.4)

We can also express the solution to the Airy’s equation in terms of the power of px ´ x0q with
x0 ‰ 0.

Example 5.2.3. Find a series solution in powers of x´ 1 of Airy’s equation

y2 ´ xy “ 0, ´8 ă x ă 8.

Solution. The point x “ 1 is an ordinary point of the Airy’s equation, and thus we look for a
solution of the form

ypxq “
8
ÿ

n“0

bnpx´ 1qn,

where we assume that the series converges in some interval |x´ 1| ă ρ. Then,

y1pxq “
8
ÿ

n“1

nbnpx´ 1qn´1 “
8
ÿ

n“0

pn` 1qbn`1px´ 1qn,

y2pxq “
8
ÿ

n“2

npn´ 1qbnpx´ 1qn´2 “
8
ÿ

n“0

pn` 2qpn` 1qbn`2px´ 1qn.

Substituting for y and y2 in the equation, we get

8
ÿ

n“0

pn`2qpn`1qbn`2px´1qn “ x
8
ÿ

n“0

bnpx´1qn “ p1`x´1q
8
ÿ

n“0

bnpx´1qn “
8
ÿ

n“0

bnpx´1qn`
8
ÿ

n“0

bnpx´1qn`1.

We remark that since we are expressing the solution in terms of the power of px ´ 1q, we have
to split x into the sum of 1 (zeroth power of x´ 1) and x´ 1. Overall, we have

8
ÿ

n“0

pn` 2qpn` 1qbn`2px´ 1qn “ b0 `
8
ÿ

n“0

pbn ` bn´1qpx´ 1qn.

Hence, we obtain the relations

2b2 “ b0,

p3 ¨ 2qb3 “ b0 ` b1,

p4 ¨ 3qb4 “ b1 ` b2,

...

pn` 2qpn` 1qan`2 “ an´1 ` an.

(5.5)

In general, when the above recurrence relation has more than two terms, the determination of
a formula for an in terms of a0 and a1 will be fairly complicated if not impossible.
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5.3 Series Solutions Near an Ordinary Point: Part 2

Keywords: radius of convergence

We continue to study the power series methods to solve

P pxqy2 `Qpxqy1 `Rpxqy “ 0, (5.6)

where P , Q, and R are polynomials, in some neighborhood of an ordinary point x0. Assuming
that (5.6) does have a solution y “ φpxq where φpxq has a Taylor series form

φpxq “
8
ÿ

n“0

anpx´ x0q
n, (5.7)

that converges for |x´ x0| ă ρ for some ρ ą 0. The coefficients an’s are determined by directly
substituting the series for y in (5.6).

Consider how we might justify the statement that if x0 is an ordinary point of (5.6), then there
exist solutions of the form of Taylor series as in (5.7). We also consider the determination of the
radius of convergence of such a series.

Suppose that there is a solution of (5.6) that has the form of (5.7). By differentiating (5.7) m
times, and setting x equal to x0, we get

m!am “ φpmqpx0q.

Hence, to compute the coefficients an in (5.7), we need to show that we can determine φpnqpx0q
for any number n from the differential equation (5.6). Suppose that y “ φpxq satisfies the
equation (5.6) and the initial conditions ypx0q “ y0 and y1px0q “ y10. Then, we have a0 “ y0 and
a1 “ y10. If we are solely interested in finding a solution of (5.6) without specifying any initial
conditions, then a0 and a1 remain arbitrary. To determine φpnqpx0q for n ě 2 (and thus an),
since φpxq satisfies the equation (5.6), we have

φ2pxq “ ´
Qpxq

P pxq
φ1pxq ´

Rpxq

P pxq
φpxq “ ´ppxqφ1pxq ´ qpxqφpxq.

Observe that at x “ x0, the right-hand side of equation above is known, thus allowing us to
compute φ2px0q: setting x “ x0 gives

φ2px0q “ ´ppx0qa1 ´ qpx0qa0.

Hence, we have

a2 “
φ2px0q

2!
“ ´

1

2
rppx0qa1 ` qpx0qa0s .

Similarly, to obtain a3, we have

3!a3 “ φ3px0q “ ´
`

ppxqφ1pxq ` qpxqφpxq
˘1
ˇ

ˇ

ˇ

x“x0
.

That is, we have

a3 “ ´
1

6

“

2ppx0qa2 ` pp
1px0q ` qpx0qqa1 ´ q

1px0qa0
‰

.

Remark: In order to compute an, we need to have pn´ 2q-th order of derivatives of ppxq and
qpxq at x “ x0. As a result, the existence of the power series solution to the equation (5.6)
depends highly on the differentiability of p and q.
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Example 5.3.1. Let y “ φpxq be a solution of the initial value problem

p1` x2qy2 ` 2xy1 ` 4x2y “ 0, yp0q “ 0, y1p0q “ 1.

Determine φ2p0q, φ3p0q, and φp4qp0q.

Solution. To find φ2p0q, simply evaluate the equation when x “ 0 and it gives

p1` 02qφ2p0q ` 2 ¨ 0 ¨ φ1p0q ` 4 ¨ 02 ¨ φp0q “ 0.

Hence, φ2p0q “ 0. To find φ3p0q, we differentiate the equation with respect to x and get

p1` x2qφ3pxq ` 4xφ2pxq ` p2` 4x2qφ1pxq ` 8xφpxq “ 0.

Evaluating the above equation at x “ 0 gives

φ3p0q ` 2φ1p0q “ 0 ùñ φ3p0q “ ´2

since φ1p0q “ y1p0q “ 1. Finally, to find φp4qp0q, we differentiate one more time and gives

p1` x2qφp4qpxq ` 6xφ3pxq ` p6` 4x2qφ2pxq ` 16xφ1pxq ` 8φpxq “ 0.

Evaluating the above equation at x “ 0 gives

φp4qp0q ` 6φ2p0q ` 8φp0q “ 0.

Hence, we have φp4qp0q “ 0.

One of the important aspect of the power series method is on the radius of convergence of the
solution series.

1. One can show that (though not easy) the radius of convergence of the solution to the
equation (5.6) is at least as large as the minimum of the radii of convergence of the series
for the function p and q with p “ Q{P and q “ R{P in the equation (5.6).

2. For the fraction ppxq “ Qpxq{P pxq, one can show that it has convergent power series
expansion at x “ x0 if P px0q ‰ 0. If Qpxq and P pxq have no common factor, then the
radius of convergence of the power series for ppxq “ Qpxq{P pxq at the point x0 is precisely
the distance from x0 to the nearest zero of P pxq.

3. In determining this distance, we must remember that P pxq “ 0 may have complex roots,
and these must also be considered.

Example 5.3.2. Determine the radius of convergence of the Taylor series for
1

1` x2
at x “ 0.

Solution. One can write

1

1` x2
“ 1´ x2 ` x4 ´ x6 ` ¨ ¨ ¨ “

8
ÿ

n“0

p´1qnx2n.

Note that we have Qpxq “ 1 and P pxq “ 1` x2 in this case. The roots of P pxq “ 0 are ˘i. The
distance between 0 and i (or ´i) is 1. Hence, the radius of convergence of the power series at
x “ 0 is 1.
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Example 5.3.3. Determine the radius of convergence of the Taylor series for
1

x2 ´ 2x` 2
at

x “ 1.

Solution. One can write

1

x2 ´ 2x` 2
“

1

1` px´ 1q2
“

8
ÿ

n“0

p´1qnpx´ 1q2n.

Note that we have Qpxq “ 1 and P pxq “ x2 ´ 2x ` 2 in this case. The roots of P pxq “ 0 are
1˘ i. The distance between 1 and 1` i (or 1´ i) is 1. Hence, the radius of convergence of the
power series at x “ 1 is 1.

Recall that the radius of convergence of the solution series is at least as large as the radii of
convergence of Qpxq{P pxq and Rpxq{P pxq in the model problem (5.6).

Example 5.3.4. Determine a lower bound for the radius of convergence of series solutions of
the differential equation

p1` x2qy2 ` 2xy1 ` 4x2y “ 0

at the point x “ 0; and at the point x “ ´0.5.

Solution. Note that P pxq “ 1 ` x2, Qpxq “ 2x, and Rpxq “ 4x2 are polynomials. The radii of
convergence of Qpxq{P pxq and Rpxq{P pxq depend on the roots of P pxq “ 0. Note that the roots
of P pxq “ 0 are ˘i. The distance between x “ 0 and ˘i is 1, thus the radius of convergence of
the solution series at x “ 0 is 1. While the distance between x “ ´0.5 to ˘i is

?
5{2, then the

solution at x “ ´0.5 with the form
8
ÿ

n“0

bn

ˆ

x`
1

2

˙

converges at least for

∣∣∣∣x` 1

2

∣∣∣∣ ă ?5

2
.

Example 5.3.5. For the differential equation

y2 ` psinxqy1 ` p1` x2qy “ 0

determine the radius of convergence of the series solution at x “ 0 (if any).

Solution. We have P pxq “ 1, Qpxq “ sinpxq and Rpxq “ 1` x2. Since P pxq ‰ 0 for all values of
x, thus there is no restriction for the radius of convergence. Hence, the series solution converges
for all x. Note that when finding the series solution, we need to expand sinx in terms of the
power series. For example, we can write sinx as

sinx “
n
ÿ

n“0

p´1qn

p2n` 1q!
x2n`1.
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5.4 Exercises

1. Seek power series solutions of the given differential equation about the given point x0 and
find the recurrence relation that the coefficients satisfy.

(a) y2 ´ xy ´ y “ 0, x0 “ 0.

(b) 2y2 ` xy1 ` 3y “ 0, x0 “ 0.

2. Determine y2p0q, y3p0q, and yp4qp0q, where ypxq is a solution of the given initial-value
problem

y2 ` xy1 ` y “ 0, yp0q “ 1, y1p0q “ 0.

3. (Optional, no need to hand in) Determine a lower bound for the radius of convergence
of series solutions at each given point x0 for the given differential equation

px2 ´ 2x´ 3qy2 ` xy1 ` 4y “ 0,

where x0 “ 4, x0 “ ´4, and x0 “ 0.

4. (Optional, no need to hand in) Consider the initial-value problem

y2 ` psinxqy “ 0, yp0q “ 1, y1p0q “ 1.

Assume the solution is

ypxq “
8
ÿ

n“0

anx
n

at x “ 0. Find the first four nonzero terms in the series.
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Chapter 6

The Laplace Transform

Keywords: Laplace transform, piecewise constant function, integration by parts

In this chapter, we introduce a very useful tool for solving linear differential equations. That is
called Laplace Transform.

6.1 Definition of the Laplace Transform

Given any function f , we define the Laplace transform of f (denoted by Ltfptqu or by F psq)
such that

Ltfptqu “ F psq :“

ż 8

0
e´stfptqdt, (6.1)

whenever this improper integral converges. We show how to compute the Laplace transform of
functions via some examples.

Example 6.1.1. Find the Laplace transform F psq “ Ltfptqu for the following functions fptq:

1. fptq ” 1 (constant function).

2. fptq “ eat, where a is any constant.

3. fptq “ sinpatq, where a is any constant.

4. fptq “ 5e´2t ´ 3 sinp4tq, t ě 0.

Solution. 1. We have

F psq “

ż 8

0
e´stdt “ ´

1

s

ż 8

0
e´stdp´stq “ ´

1

s
e´st

ˇ

ˇ

ˇ

8

0
“ ´

1

s
p0´ 1q “

1

s
.

2. To make the integrant integrable, one has to have s ą a. Then, we have

F psq “

ż 8

0
e´steatdt “

ż 8

0
e´ps´aqtdt “

1

s´ a
.

105
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3. We have to use integration by parts:

F psq “

ż 8

0
e´st sinpatqdt “ ´

1

a

ż 8

0
e´std cospatq

“ ´
1

a

ˆ

e´st cospatq
ˇ

ˇ

ˇ

8

0
` s

ż 8

0
e´st cospatqdt

˙

“
1

a
´
s

a

ż 8

0
e´st cospatqdt

“
1

a
´

s

a2

ż 8

0
e´std sinpatq

“
1

a
´

s

a2

ˆ

e´st sinpatq
ˇ

ˇ

ˇ

8

0
` s

ż 8

0
e´st sinpatqdt

˙

“
1

a
´
s2

a2
F psq.

Therefore, we have
ˆ

1`
s2

a2

˙

F psq “
1

a
ùñ

a2 ` s2

a2
F psq “

1

a
ùñ F psq “

a

s2 ` a2
.

4. Let fptq “ gptq ` hptq with gptq “ 5e´2t and hptq “ ´3 sinp4tq. Obviously, we have

Ltfptqu “
ż 8

0
e´stfptqdt “

ż 8

0
e´stpgptq ` hptqqdt

“

ż 8

0
re´stgptq ` e´sthptqsdt “

ż 8

0
e´stgptqdt`

ż 8

0
e´sthptqdt

“ Ltgptqu ` Lthptqu.

Using the results in 2. and 3., we have

Ltgptqu “ 5

ż 8

0
e´ste´2tdt “

5

s` 2
pwith a “ ´2q,

Lthptqu “ ´3

ż 8

0
e´st sinp4tqdt “ ´3

4

s2 ` 16
“ ´

12

s2 ` 16
pwith a “ 4q.

Therefore, we have

F psq “ Ltfptqu “ 5

s` 2
´

12

s2 ` 16
.

In the example above, for any functions f1 and f2, we note that the Laplace transform is a linear
operator in the sense that

Ltc1f1ptq ` c2f2ptqu “ c1Ltf1ptqu ` c2Ltf2ptqu,

for any constants c1 and c2

Example 6.1.2. For piecewise constant function

fptq :“

$

&

%

1, 0 ď t ă 1,
k, t “ 1,
0, t ą 1,

with 0 ă k ă 1, compute its Laplace transform. The function fptq often represents a unit pulse
in engineering contexts.
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Solution. Since fptq ” 0 when t ą 1, then we just need to calculate the Laplace transform with
0 ă t ă 1. We have

Ltfptqu “
ż 8

0
e´stfptqdt “

ż 1

0
e´st ¨ 1dt “ ´

1

s

ż 1

0
e´stdp´stq “

1´ e´s

s
.

The Laplace transform does not depend on k even the function is discontinuous at t “ 1. Even
if fptq is not defined at this point, the Laplace transform of f remains the same. Thus, there
are many functions, differing only in their value at a single point, that have the same Laplace
transform.

6.2 Solution of Initial-Value Problem

Keywords: solving IVPs by Laplace transform, partial fraction technique

In this section, we show how the Laplace transform can be used to solve initial-value problems
for linear differential equations with constant coefficients. To this aim, we first relate the Laplace
transform of 1 to the transform of f . Suppose that f is a continuously differentiable function.
Then, using integration by parts, we have

Ltf 1ptqu “
ż 8

0
e´stf 1ptqdt “

ż 8

0
e´stdfptq

“ e´stfptq
ˇ

ˇ

ˇ

8

0
` s

ż 8

0
e´stfptqdt

“ ´fp0q ` s

ż 8

0
e´stfptqdt “ sLtfptqu ´ fp0q.

(6.2)

That is, performing the Laplace transform of the derivative of f is multiplying s with the
Laplace transform of the function itself and subtracting its value at t “ 0. Moreover, if f 1 is
still continuously differentiable, we then have

Ltf2ptqu “ sLtf 1ptqu ´ f 1p0q “ s psLtfptqu ´ fp0qq ´ f 1p0q “ s2Ltfptqu ´ sfp0q ´ f 1p0q. (6.3)

Suppose that we are solving the initial-value problem

ay2 ` by1 ` cy “ gptq, yp0q “ y0, y1p0q “ y10. (6.4)

The idea in using the Laplace transform to solve (6.4) is as follows:

• Use the relations (6.2) and (6.3) to transform the initial-value problem (6.4) for an unknown
function yptq in the t-domain into a simpler problem (an algebraic problem) for Y psq “
Ltyptqu in the s-domain. That is, if we write Gpsq :“ Ltgptqu, we have

Ltay2ptqu ` Ltby1ptqu ` Ltcyptqu “ Ltgptqu
a
`

s2Y psq ´ syp0q ´ y1p0q
˘

` b psY psq ´ yp0qq ` cY psq “ Gpsq

or equivalently

`

as2 ` bs` c
˘

Y psq “ Gpsq ` pas` bqy0 ` ay
1
0. (6.5)

Here, we make use of the initial conditions.
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• Solve (6.5) and we have

Y psq “
Gpsq

as2 ` bs` c
`
pas` bqy0 ` ay

1
0

as2 ` bs` c
(6.6)

• Recover the desired solution yptq from its transform Y psq. The last step is known as
inverting the transform. Usually, we have to look up the table of Laplace transform to
recover the function yptq from Y psq. In this case, we denote yptq “ L´1tY psqu.

Frequently, a Laplace transform F psq is expressible as a sum of several terms

F psq “ F1psq ` F2psq ` ¨ ¨ ¨ ` Fnpsq.

Suppose that f1ptq “ L´1tF1psqu, ¨ ¨ ¨ , fnptq “ L´1tFnptqu. Then, the function

fptq “ f1ptq ` ¨ ¨ ¨ ` fnptq

has the Laplace transform F psq. The inverse Laplace transform L´1 is also a linear operator.
In many problems it is convenient to make use of the linearity property by decomposing a given
transform into a sum of functions whose inverse transforms are already known or can be found
in the table of Laplace transform. In these cases, partial fraction expansions are particularly
useful for this purpose.

Example 6.2.1. Using the Laplace transform, find the solution of the differential equation

y2 ´ y1 ´ 2y “ 0, yp0q “ 1, y1p0q “ 0. (6.7)

Solution. Although this problem can be solved using the techniques presented in Chapter 3, we
present the technique of Laplace transform for this simple problem to illustrate the idea. As a
remark, if gptq “ 0 for any t, then Gpsq “ Ltgptqu “ 0 for any s ą 0. Denote Y psq “ Ltyptqu.
Using the result of (6.6), we have

Y psq “
s´ 1

s2 ´ s´ 2
“

s´ 1

ps´ 2qps` 1q
. (6.8)

To determine the solution yptq, we find the function whose Laplace transform is Y psq given in
(6.8). This can be done most easily by expanding the right-hand side of (6.8) in partial fractions.
Thus, we may write

Y psq “
s´ 1

ps´ 2qps` 1q
“

A

s´ 2
`

B

s` 1
“
Aps` 1q `Bps´ 2q

ps´ 2qps` 1q
,

where A and B are to be determined. By equating numerators of the second and the fourth
terms, we obtain

s´ 1 “ aps` 1q ` bps´ 2q “ pa` bqs` pa´ 2bq.

Therefore, we must have
a` b “ 1 and a´ 2b “ ´1.

As a result, we have a “ 1{3 and b “ 2{3 and

Y psq “
1{3

s´ 2
`

2{3

s` 1
.

Recall that Lteatu “ 1{ps´ aq for any constant a, we have

L´1
ˆ

1

s´ 2

˙

“ e2t and L´1
ˆ

1

s` 1

˙

“ e´t.
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Therefore, the solution yptq is

yptq “
1

3
e2t `

2

3
e´t.

There is essentially a one-to-one correspondence between functions and their Laplace transforms.
See Table 6.1 below.

fptq “ L´1tF psqu F psq “ Ltfptqu

1 s´1, ps ą 0q

eat
1

s´ a
, s ą a

tn, n positive integer
n!

sn`1
, s ą 0

sinpatq
a

s2 ` a2
, s ą 0

cospatq
s

s2 ` a2
, s ą 0

sinhpatq
a

s2 ´ a2
, s ą |a|

coshpatq
s

s2 ´ a2
, s ą |a|

eat sinpbtq
b

ps´ aq2 ` b2
, s ą 0

eat cospbtq
s´ a

ps´ aq2 ` b2
, s ą 0

tneat, n positive integer
n!

ps´ aqn`1
, s ą 0

ucptq “

"

0 t ă c
1 t ě c

e´cs

s
, s ą 0

ucptqfpt´ cq e´csF psq

ectfptq F ps´ cq

Table 6.1: Elementary Laplace Transforms

Example 6.2.2. Find the solution of the initial-value problem

y2 ` y “ sinp2tq, yp0q “ 2, y1p0q “ 1. (6.9)
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Solution. Taking the Laplace transform of the differential equation (6.9), we obtain

s2Y psq ´ syp0q ´ y1p0q ` Y psq “
2

s2 ` 4

where the transform of sinp2tq has been obtained from line 4 of Table 6.1. Substituting for yp0q
and y1p0q and solving for Y psq, we obtain

Y psq “
2s3 ` s2 ` 8s` 6

ps2 ` 1qps2 ` 4q
.

Using partial fractions, we can write Y psq in the form

Y psq “
as` b

s2 ` 1
`
cs` d

s2 ` 4
“
pas` bqps2 ` 4q ` pcs` dqps2 ` 1q

ps2 ` 1qps2 ` 4q
.

By expanding the numerator and equating it to the numerators, we find that

2s3 ` s2 ` 8s` 6 “ pa` cqs3 ` pb` dqs2 ` p4a` cqs` p4b` dq

for all s. Then, comparing coefficients of like powers of s, we have

a` c “ 2, b` d “ 1, 4a` c “ 8, 4b` d “ 6.

Consequently, we have a “ 2, c “ 0, b “ 5{3, and d “ ´2{3. Then, we have

Y psq “
2s

s2 ` 1
`

5{3

s2 ` 1
´

2{3

s2 ` 4
.

From lines 4 and 5 of the Table 6.1, the solution of the given initial-value problem is

yptq “ 2 cos t`
5

3
sin t´

1

3
sinp2tq.

6.3 Step Functions; Translation of functions

In this section, we introduce the concept of step function, which is very useful in many appli-
cations. We introduce the unit step function, denoted by ucptq, (or Heaviside function) to
be

ucptq “

"

0, t ă c,
1, t ě c.

(6.10)

Here c is a given constant. We always assume that c is non-negative since as the Laplace
transform involves values of t ą 0. The graphs of ucptq and 1´ ucptq are plotted in Figure 6.1.
The function ucptq represents that one adds a jump with unit 1 at the time t “ c and keep this
pulse for all the time t ą c. If one want to reduce a unit jump at t “ c, then one should add
´ucptq at t “ c.

We remark that u0ptq “ 1 when c “ 0. Next, we present some examples of general step functions
in terms of the unit step function ucptq for any non-negative c.
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Figure 6.1: Step functions ucptq and 1´ ucptq.

Figure 6.2: The function hptq “ uπptq ´ u2πptq.

Example 6.3.1. Let hptq be a function such that

hptq “

$

&

%

0, 0 ď t ă π,
1, π ď t ă 2π,
0, 2π ď t ă 8.

The function hptq can be represented by

hptq “ uπptq ´ u2πptq

for any values t ě 0. The figure of hptq is plotted in Figure 6.2.

Example 6.3.2. Let fptq be a function such that

fptq “

$

’

’

&

’

’

%

2, 0 ď t ă 4,
5, 4 ď t ă 7,
´1, 7 ď t ă 9.
1, 9 ď t ă 8.

Sketch the graph of y “ fptq and express fptq in terms of ucptq.

Solution. The graph of fptq is plotted in 6.3. We start with the function f1ptq “ 2, which agrees
with fptq when 0 ď t ă 4. To produce the jump of three units at t “ 4, we add 3u4ptq to f1ptq,
obtaining

f2ptq “ 2` 3u4ptq

which agrees with fptq when 0 ď t ă 7. The negative jump of six units at t “ 7 corresponds to
adding ´6u7ptq, which gives

f3ptq “ 2` 3u4 ´ 6u7ptq.

Finally, we add 2u9ptq to match the jump of two units at t “ 9. Thus, we obtain

fptq “ 2` 3u4 ´ 6u7ptq ` 2u9ptq.
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Figure 6.3: The function fptq “ 2` 3u4ptq ´ 6u7ptq ` 2u9ptq.

We now study the Laplace transform of the unit step function ucptq for any non-negative constant
c. We have

Ltucptqu “
ż 8

0
e´stucptqdt “

ż 8

c
e´stdt “

e´cs

s
s ą 0.

For a given function fptq defined for t ě 0, we often want to consider the related function gptq
defined by

gptq “

"

0, t ă c,
fpt´ cq, t ě c,

which represents a translation of fptq a distance c in the positive t direction and is zero for t ă c.
See Figure 6.4. Making use of the unit function, we can write gptq in terms of

gptq “ ucptqfpt´ cq.

The unit step function is particular useful in Laplace transform because of the following relation

Figure 6.4: The translation of fptq.

between the transform of fptq and that of its translation ucptqfpt´ cq. If the Laplace transform
Ltfptqu “ F psq exists for s ą a ě 0, and if c is a positive constant, then

Ltucptqfpt´ cqu “ e´csLtfptqu “ e´csF psq s ą a. (6.11)

Conversely, if fptq is the inverse Laplace transform of F psq, then

ucptqfpt´ cq “ L´1te´csF psqu. (6.12)

It is obvious since

Ltucptqfpt´ cqu “
ż 8

0
e´stucptqfpt´ cqdt “

ż 8

c
e´stfpt´ cqdt.
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Introduce a new variable σ “ t´ c, we have

Ltucptqfpt´ cqu “
ż 8

0
e´ste´spσ`cqfpσqdσ “ e´cs

ż 8

0
e´sσfpσqdσ “ e´csF psq.

The equation (6.12) follows by taking the inverse transform of both sides of (6.11). We also
introduce the following useful property of Laplace transforms. If F psq “ Ltfptqu exists for
s ą a ě 0 and if c is a constant, then

Ltectfptqu “ F ps´ cq s ą a` c. (6.13)

Conversely, if fptq “ L´1tF psqu, then

ectfptq “ ectL´1tF psqu “ L´1tF ps´ cqu. (6.14)

Example 6.3.3. Let fptq be given by

fptq “

$

&

%

sinptq, 0 ď t ă
π

4
,

sinptq ` cos
´

t´
π

4

¯

,
π

4
ď t.

It is easy to note that

fptq “ sinptq ` gptq, where gptq “ uπ{4ptq cos
´

t´
π

4

¯

“

$

&

%

0, 0 ď t ă
π

4
,

cos
´

t´
π

4

¯

,
π

4
ď t.

Thus, the Laplace transform of fptq becomes

Ltfptqu “ Ltsinptqu ` Ltgptqu “ Ltsinptqu ` L
!

uπ{4ptq cos
´

t´
π

4

¯)

.

Using the property (6.11), we have

F psq “ Ltfptqu “ 1

s2 ` 1
` e´πs{4Ltcosptqu “

1` se´πs{4

s2 ` 1
.

Example 6.3.4. We can find the inverse Laplace transform of

F psq “
1´ e´2s

s2

using the property (6.12). Note that

F psq “
1

s2
´
e´2s

s2
.

Note that

L´1
"

1

s2

*

“ t and u2ptqpt´ 2q “ L´1
"

e´2s

s2

*

using the property (6.12). Therefore, we have

fptq “ L´1tF psqu “ L´1
"

1

s2

*

´ L´1
"

e´2s

s2

*

“ t´ u2ptqpt´ 2q “

"

t, 0 ď t ă 2,
2, t ě 2.
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Example 6.3.5. Let Gpsq be given by

Gpsq “
1

s2 ´ 4s` 5
“

1

ps´ 2q2 ` 1
.

If we define F psq “ ps2 ` 1q´1, then we have

Gpsq “
1

ps´ 2q2 ` 1
“ F ps´ 2q.

Since L´1tF psqu “ sin t, it follows from the property (6.14), we have

L´1tGpsqu “ L´1tF ps´ 2qu “ e2tL´1tF psqu “ e2t sinptq.

The results of this section are useful in solving differential equations, particularly those that
have discontinuous forcing functions. The next section is devoted to examples illustrating this
point.

6.4 Differential Equations with Discontinuous Forcing Functions

In this section, we turn our attention to some examples in which the nonhomogeneous term
(forcing function) is discontinuous.

Example 6.4.1. Find the solution of the initial-value problem

2y2 ` y1 ` 2y “ gptq, yp0q “ 0, y1p0q “ 0, (6.15)

where

gptq “ u5ptq ´ u20ptq “

$

&

%

0, 0 ď t ă 5,
1, 5 ď t ă 20,
0, 20 ď t ă 8.

We remark that this problem governs the charge on the capacitor in a simple electric circuit with
a unit voltage pulse for 5 ď t ă 20. Alternatively, y may represent the response of a damped
oscillator subject to the applied force gptq.

Solution. The Laplace transform of (6.16) is

2s2Y psq ´ 2syp0q ´ 2y1p0q ` sY psq ´ yp0q ` 2Y psq “ Ltu5ptqu ´ Ltu20ptqu “
1

s

`

e´5s ´ e´20s
˘

.

Making use of the initial values and solving for Y psq, we obtain

Y psq “
e´5s ´ e´20s

sp2s2 ` s` 2q
.

It is useful to write

Y psq “ e´5sHpsq ´ e´20sHpsq where Hpsq “
1

sp2s2 ` s` 2q
.

We need to find the inverse Laplace transform hptq “ L´1tHpsqu since

yptq “ L´1tY psqu “ L´1te´5sHpsqu ´ L´1te´20sHpsqu “ u5ptqhpt´ 5q ´ u20ptqhpt´ 20q.
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That is, we have

yptq “

$

&

%

0 0 ď t ă 5,
hpt´ 5q 5 ď t ă 20,
hpt´ 5q ´ hpt´ 20q t ě 20.

To determine hptq, we use the partial fraction expansion of Hpsq and we have

Hpsq “
a

s
`

bs` c

2s2 ` s` 2
.

Upon determining the coefficients, we find that a “ 1{2, b “ ´1 and c “ ´1{2. Thus, we have

Hpsq “
1

2
¨

1

s
´

s` 1
2

2s2 ` s` 2
“

1

2

˜

1

s
´

s` 1
2

s2 ` s
2 ` 1

¸

.

We complete the square for s2 ` s
2 ` 1 “

`

s` 1
4

˘2
` 15

16 “
`

s` 1
4

˘2
`

´?
15
4

¯2
. We have

Hpsq “
1

2

¨

˚

˝

1

s
´

s` 1
4

`

s` 1
4

˘2
`

´?
15
4

¯2 ´

1
4

`

s` 1
4

˘2
`

´?
15
4

¯2

˛

‹

‚

“
1

2

¨

˚

˝

1

s
´

s` 1
4

`

s` 1
4

˘2
`

´?
15
4

¯2 ´
1
?

15

?
15
4

`

s` 1
4

˘2
`

´?
15
4

¯2

˛

‹

‚

“
1

2
¨

1

s
´

1

2

s` 1
4

`

s` 1
4

˘2
`

´?
15
4

¯2 ´
1

2
?

15

?
15
4

`

s` 1
4

˘2
`

´?
15
4

¯2 .

By referring Table 6.1, we have

hptq “ L´1tHpsqu “ 1

2
´

1

2
e´t{4 cos

ˆ

?
15

4
t

˙

´
1

2
?

15
e´t{4 sin

ˆ

?
15

4
t

˙

.

Example 6.4.2. Find the solution of the initial-value problem

y2 ` 4y “ gptq, yp0q “ 0, y1p0q “ 0, (6.16)

where

gptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, 0 ď t ă 5,

t´ 5

5
, 5 ď t ă 10,

1, 10 ď t ă 8.

This forcing function is known as ramp loading.

Solution. Note that

gptq “
1

5
pu5ptqpt´ 5q ´ u10ptqpt´ 10qq .

Then, taking the Laplace transform and use the initial conditions, we have

ps2 ` 4qY psq “
e´5s ´ e´10s

5s2
.
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Then, we can solve for Y psq as follows:

Y psq “
1

5
pe´5s ´ e´10sqHpsq, where Hpsq “

1

s2ps2 ` 4q
.

Denote hptq “ L´1tHpsqu. We have

yptq “ L´1tY psqu “ 1

5

´

L´1te´5sHpsqu´L´1te´10sHpsqu
¯

“
1

5

´

u5ptqhpt´5q´u10ptqhpt´10q
¯

.

It remains to determine hptq. Using the partial fractions, we have

Hpsq “
1{4

s2
´

1{4

s2 ` 4
“

1

4
¨

1

s2
´

1

8
¨

2

s2 ` 22
.

It follows that

hptq “
t

4
´

1

8
sinp2tq.

6.5 Impulse Functions; Dirac Delta Functions

In this section, we introduce the impulse functions, which describe the phenomena of an impul-
sive nature such as voltages or forces of large magnitude that act over short time intervals.

Given a function gptq such that

gptq “

"

very large t0 ´ τ ă t ă t0 ` τ,
0 otherwise,

for some τ ą 0 and t0 being any constant. We define the total impulse of gptq to be

Ipτq :“

ż t0`τ

t0´τ
gptqdt “

ż 8

´8

gptqdt.

This total impulse is a measure of the strength of the forcing function.

Example 6.5.1. Let t0 “ 0 and τ be any positive number. Let gptq be given by

gptq “ dτ ptq :“

$

’

&

’

%

1

2τ
´τ ă t ă τ,

0 otherwise.

(6.17)

The total impulse Ipτq of gptq is Ipτq “ 1, which is independent of the value of τ , as long as
τ ‰ 0. We let the number τ become smaller and smaller; that is, we consider the limit of dτ ptq
as τ Ñ 0` keeping τ being non-negative. As a result, we obtain that

lim
τÑ0`

dτ ptq “ 0 for any t ‰ 0, but lim
τÑ0`

dτ p0q “ 8. (6.18)

In the meantime, the total impulse is still Ipτq “ 1 for each τ ‰ 0 and it follows that

lim
τÑ0`

Ipτq “ 1. (6.19)
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The equations (6.18) and (6.19) define an idealized unit impulse function δptq, which imparts
an impulse of magnitude infinity at t “ 0 but is zero for all values of t ‰ 0; also it has the total
impulse one. That is, the weird function δptq is defined to have the properties

δptq “

"

8 t “ 0,
0 t ‰ 0,

(6.20)

ż 8

´8

δptqdt “ 1. (6.21)

This function δptq is not an ordinary one and is known as generalized function. It is usually
called the Dirac delta function. Since δptq corresponds to a unit impulse at t “ 0, a unit
impulse at an arbitrary point t “ t0 is given by δpt´ t0q. From (6.20) and (6.21), we have

δpt´ t0q “

"

8 t “ t0,
0 t ‰ t0,

(6.22)

ż 8

´8

δpt´ t0qdt “ 1. (6.23)

We define the Laplace transform of δpt´ t0q to be

Ltδpt´ t0qu “
ż 8

0
e´stδptqdt “ e´st0 (6.24)

for any t0 ą 0. For t0 “ 0, we have
Ltδptqu “ 1.

The Dirac delta function has the following useful property: for any function fptq, it holds that

ż 8

´8

δpt´ t0qfptqdt “ fpt0q

for any number t0. The following examples illustrate the use of the delta functions in solving
initial-value problems with impulsive forcing functions.

Example 6.5.2. Find the solution of the initial-value problem

2y2 ` y1 ` 2y “ δpt´ 5q, yp0q “ y1p0q “ 0. (6.25)

Solution. To solve the given problem, we first take the Laplace transform of the differential
equation and use the initial conditions, obtaining

p2s2 ` s` 2qY psq “ e´5s.

Thus, we have

Y psq “ e´5s ¨
1

2s2 ` s` 2
.

The right-hand side is a product of e´5s with a fraction (dominator being a quadratic function
2s2 ` s` 2). This motivates us to use

rY psq “s e´5sLtfptqu “ Ltu5ptqfpt´ 5qu

for some function f (to be determined) such that

Ltfptqu “ 1

2s2 ` s` 2
.
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Since the Laplace transform of fptq is a fraction with quadratic dominator, it relates to some
sine and cosine functions after completing the square. Hence, we have

Ltfptqu “ 1

2s2 ` s` 2
“

1

2
¨

1
`

s` 1
4

˘2
` 15

16

“
1

2
¨

4
?

15
¨

?
15
4

`

s` 1
4

˘2
`

´?
15
4

¯2 “
2
?

15
¨

?
15
4

`

s` 1
4

˘2
`

´?
15
4

¯2 .

If we denote

F psq “
a

s2 ` a2
“ Ltsinpatqu with a “

?
15

4
,

then, we have

Ltfptqu “ 2
?

15
F

ˆ

s`
1

4

˙

“
2
?

15
Lte´t{4 sinpatqu ùñ fptq “

2
?

15
e´t{4 sin

ˆ

?
15

4
t

˙

.

Thus,

Y psq “
e´5s

2s2 ` s` 2
“ Ltu5ptqfpt´ 5qu ùñ yptq “ u5ptqfpt´ 5q.

It is possible to write yptq in the form

yptq “ u5ptqfpt´ 5q “

$

’

’

&

’

’

%

0, 0 ď t ă 5,

2
?

15
e´pt´5q{4 sin

ˆ

?
15

4
pt´ 5q

˙

, t ě 5.

0 5 10 15 20

-0.2

0

0.2

0.4

Figure 6.5: The solution yptq to the initial-value problem in Example 6.5.2.

See Figure 6.5 for the graph of the solution yptq. It matches the intuition in the sense that
the solution yptq is zero before the time moment t “ 5 since the source term and the initial
conditions are all zero before t “ 5.

Example 6.5.3. Find the solution of the initial-value problem

y2 ` 4y “ δpt´ πq, yp0q “ y1p0q “ 0. (6.26)
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Solution. To solve the given problem, we first take the Laplace transform of the differential
equation and use the initial conditions, obtaining

ps2 ` 4qY psq “ e´πs ùñ Y psq “
e´πs

s2 ` 4
.

Note that

L´1
"

F psq :“
1

s2 ` 4

*

“
1

2
L´1

"

2

s2 ` 4

*

“
1

2
sinp2tq “: fptq.

Thus, we have

yptq “ L´1tY psqu “ L´1te´πsF psqu “ uπptqfpt´ πq “
1

2
uπptq sinp2pt´ πqq “

1

2
uπptq sinp2tq

since sinp2tq “ sinp2t´ 2πq. Hence, we have

yptq “
1

2
uπptq sinp2tq “

$

’

&

’

%

0, 0 ď t ă π,

1

2
sinp2tq, t ě π.

6.6 The Convolution Integral

In this section, we introduce a special integral operation that is called convolution. Given any
two functions f and g, we define the convolution of f and g, denoted by f ˚g, which is a function
such that

pf ˚ gqptq “

ż t

0
fpt´ τqgpτqdτ. (6.27)

Sometimes it is possible to identify a Laplace transform Hpsq as the product of two other Laplace
transform F psq and Gpsq, the latter transforms corresponding to some known functions f and
g, respectively. In this even, we might anticipate that Hpsq is the convolution of f and g. In
particular, we have the following result, referred to be the convolution theorem.

If F psq “ Ltfptqu and Gpsq “ Ltgptqu and Hpsq “ F psqGpsq “ Lthptqu, then we have

hptq “ pf ˚ gqptq “

ż t

0
fpt´ τqgpτqdτ “

ż t

0
fpτqgpt´ τqdτ “ pg ˚ fqptq. (6.28)

According to this theorem, the transform of the convolution of two functions, rather than the
transform of their ordinary product, is given by the product of the separate transforms. It
is conventional to emphasize that the convolution integral can be thought of as a generalized
product by writing

hptq “ pf ˚ gqptq.

The operation of convolution has many of the properties of ordinary multiplication. For example,
it has

• f ˚ g “ g ˚ f ;

• f ˚ pg1 ` g2q “ f ˚ g1 ` f ˚ g2;
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• pf ˚ gq ˚ h “ f ˚ pg ˚ hq;

• f ˚ 0 “ 0 ˚ f “ 0.

Here, the zeros denote not the number zero but the function that has the value 0 for each value
of t. One can easily verify those properties.

There are other properties of ordinary multiplication that the convolution integral does not have.
It is not true in general that f ˚ 1 is equal to f . For instance, if we take fptq “ cos t, then we
have

pf ˚ 1qptq “

ż t

0
fpt´ τq ¨ 1 dτ “

ż t

0
cospt´ τqdτ

“ ´ sinpt´ τq
ˇ

ˇ

ˇ

τ“t

τ“0
“ ´ sin 0` sin t “ sin t

‰ fptq.

Similarly, it may not be true that f ˚ f is nonnegative (e.g. when fptq “ sin t). Now let us look
at some examples.

Example 6.6.1. Find the inverse Laplace transform of

Hpsq “
a

s2ps2 ` a2q
.

Here, a is any real constant.

Solution. It is convenient to think of Hpsq as the product of

Hpsq “ F psqGpsq where F psq “
1

s2
and Gpsq “

a

s2 ` a2
.

Note that Lttu “ F psq and Ltsinpatqu “ Gpsq. Then, using the convolution theorem, we have

hptq “ L´1tHpsqu “
ż t

0
pt´ τq sinpaτqdτ “

at´ sinpatq

a2
.

Note that
ż t

0
pt´ τq sinpaτqdτ “ t

ż t

0
sinpaτqdτ ´

ż t

0
τ sinpaτqdτ

“
t

a

ˆ

´ cospaτq
ˇ

ˇ

ˇ

τ“t

τ“0

˙

`
1

a

ż t

0
τd cospaτq

“
t

a
´

cospatq

a
`

1

a

ˆ

τ cospaτq
ˇ

ˇ

ˇ

τ“t

τ“0
´

ż t

0
cospaτqdτ

˙

“
t

a
´

1

a2
sinpaτq

ˇ

ˇ

ˇ

τ“t

τ“0
“
t

a
´

sinpatq

a2

“
at´ sinpatq

a2
.

We remark that hptq can be found by expanding Hpsq in partial fractions.

Example 6.6.2. Find the solution of the initial-value problem

y2 ` 4y “ gptq,

yp0q “ 3,

y1p0q “ ´1.

(6.29)

Here, the function gptq is arbitrary. We would express the solution yptq in terms of an integral
representation.
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Solution. Denote Y psq “ Ltyptqu and Gpsq “ Ltgptqu. By taking the Laplace transform of the
differential equation and using the initial conditions, we have

s2Y psq ´ syp0q ´ y1p0q ` 4Y psq “ Gpsq ùñ s2Y psq ´ 3s` 1` 4Y psq “ Gpsq.

Therefore, we have

ps2 ` 4qY psq “ 3s´ 1`Gpsq ùñ Y psq “
3s´ 1

s2 ` 4
`

Gpsq

s2 ` 4
.

It is convenient to write Y psq in the form

Y psq “ 3
s

s2 ` 4
´

1

2

2

s2 ` 4
`

1

2

2

s2 ` 4
Gpsq.

The first two terms relate to the term of 3 cosp2tq and sinp2tq{2, and the third term can be
represented by the convolution of sinp2tq and gptq. Hence, we have

yptq “ 3 cosp2tq ´
1

2
sinp2tq `

1

2

ż t

0
sinp2pt´ τqqgpτqdτ.

If a specific forcing function g is given, then the integral can be evaluated.

The convolution integral is a powerful tool for writing the solution of an initial-value problem
in terms of an integral. Consider the following general (second-order) initial-value problem as
follows:

ay2 ` by1 ` cy “ gptq, yp0q “ y0, y1p0q “ y10. (6.30)

Denote Y psq “ Ltyptqu and Gpsq “ Ltgptqu. Taking the Laplace transform of (6.30) and using
initial conditions, we have

pas2 ` bs` cqY psq ´ pas` bqy0 ´ ay
1
0 “ Gpsq.

Then, we have

Y psq “
pas` bqy0 ` ay

1
0

as2 ` bs` c
`

Gpsq

as2 ` bs` c
.

If we write

Φpsq :“
pas` bqy0 ` ay

1
0

as2 ` bs` c
and Ψpsq :“

Gpsq

as2 ` bs` c
,

then we have
Y psq “ Φpsq `Ψpsq

and consequently
yptq “ φptq ` ψptq

with
φptq “ L´1tΦpsqu and ψptq “ L´1tΨpsqu.

Now, we do some observation here. The function φptq is actually the solution of the homogeneous
initial-value problem:

ay2 ` by1 ` cy “ 0, yp0q “ y0, y1p0q “ y10,

which can be obtained from (6.30) with zero forcing function. On the other hand, ψptq is the
solution of the nonhomogeneous initial-value problem

ay2 ` by1 ` cy “ gptq, yp0q “ 0, y1p0q “ 0,
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in which the initial values are all zero.

Once specific values of a, b, and c are given, we can easily find φptq by the techniques presented
in Chapter 3. To find ψptq “ L´1tΨpsqu, it is convenient to write Ψpsq as

Ψpsq “ HpsqGpsq where Hpsq “
1

as2 ` bs` c
.

The function Hpsq is known as the transfer function and depends only on the values of a, b,
and c. The function Gpsq depends on the external force gptq that is applied to the equation. By
the convolution theorem, we have

ψptq “ L´1tHpsqGpsqu “
ż t

0
hpt´ τqgpτqdτ,

where hptq “ L´1tHpsqu, and gptq is the given forcing function.

Referring to Example 6.6.2, we note that the transfer function is Hpsq “ 1{ps2 ` 4q and hptq “
sinp2tq{2. Also, the first two terms in the solution relate to the solution of the corresponding
homogeneous equation that satisfies the given initial conditions.

Example 6.6.3. Solve the initial-value problem

y2 ` y “ ´4 sinp2tq, yp0q “ 0, y1p0q “ 2. (6.31)

Solution. First, we split the problem into two sub-problems:

y2 ` y “ 0, yp0q “ 0, y1p0q “ 2, (6.32)

and

y2 ` y “ ´4 sinp2tq, yp0q “ 0, y1p0q “ 0. (6.33)

We write gptq “ ´4 sinp2tq and Gpsq “ Ltgptqu. We denote φptq the solution of (6.32). One can
easily have

φptq “ 2 sinptq.

We denote ψptq the solution of (6.33) and Ψpsq “ Ltψptqu. We have

s2Ψpsq `Ψpsq “ ps2 ` 1qΨpsq “ ´4
2

s2 ` 4
ùñ Ψpsq “

1

s2 ` 1
¨ p´4q

2

s2 ` 4
.

Let

Hpsq “
1

s2 ` 1
ùñ hptq “ L´1

"

1

s2 ` 1

*

“ sin t.

Therefore, the solution y(t) of (6.31) is

yptq “ φptq ` ψptq “ 2 sin t` ph ˚ gqptq

“ 2 sin t`

ż t

0
hpt´ τqgpτqdτ

“ 2 sin t´ 4

ż t

0
sinpt´ τq sinp2τqdτ.

Using the trigonometric identity

sinpαq sinpβq “
1

2
pcospα´ βq ´ cospα` βqq and cosp´θq “ cospθq,
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we have
ż t

0
sinpt´ τq sinp2τqdτ “

1

2

ż t

0

´

cospt´ 3τq ´ cospt` τq
¯

dτ

“
1

2

ż t

0
cosp3τ ´ tqdτ ´

1

2

ż t

0
cospτ ` tqdτ

“
1

6

ż t

0
cosp3τ ´ tqdp3τ ´ tq ´

1

2

ż t

0
cospτ ` tqdpτ ` tq

“
1

6

ˆ

sinp3τ ´ tq
ˇ

ˇ

ˇ

τ“t

τ“0

˙

´
1

2

ˆ

sinpτ ` tq
ˇ

ˇ

ˇ

τ“t

τ“0

˙

“
1

6
psinp2tq ´ sinp´tqq ´

1

2
psinp2tq ´ sin tq

“ ´
1

3
sinp2tq `

ˆ

1

6
`

1

2

˙

sin t “ ´
1

3
sinp2tq `

2

3
sin t.

As a result, the solution yptq of (6.31) is

yptq “ 2 sin t´
8

3
sin t`

4

3
sinp2tq “ ´

2

3
sin t`

4

3
sinp2tq.

Example 6.6.4. Express the solution of the given initial-value problem in terms of a convolution
integral:

y2 ` 3y1 ` 2y “ cospatq, yp0q “ 1, y1p0q “ 0. (6.34)

Solution. First, we split the original problem into two sub-problems:

φ2 ` 3φ1 ` 2φ “ 0, φp0q “ 1, φ1p0q “ 0 (6.35)

and

ψ2 ` 3ψ1 ` 2ψ “ cospatq, ψp0q “ 0, ψ1p0q “ 0. (6.36)

Here, the problem (6.35) can be solved by the approach introduced in Chapter 3. In particular,
we solve the characteristic equation

r2 ` 3r ` 2 “ pr ` 2qpr ` 1q “ 0 ùñ r1 “ ´1, r2 “ ´2.

We obtain
φptq “ c1e

´t ` c2e
´2t ùñ c1 ` c2 “ 1, ´c1 ´ 2c2 “ 0.

Solving for c1 and c2, we have c1 “ 2 and c2 “ ´1 and

φptq “ 2e´t ´ e´2t.

Next, we solve ψptq. Denote Ψpsq “ Ltψptqu. Using the Laplace transform, we have

ps2 ` 3s` 2qΨpsq “
s

s2 ` a2
ùñ Ψpsq “

s

ps2 ` 3s` 2qps2 ` a2q
.

By completing the square, we have

s2 ` 3s` 2 “ s2 ` 3s`
9

4
´

1

4
“

ˆ

s`
3

2

˙2

´
1

22
.
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Then, we have x

Ψpsq “
1

`

s` 3
2

˘2
´ 1

22
looooooomooooooon

“:F psq

¨
s

s2 ` a2
looomooon

Gpsq

.

Note that
Gpsq “ Ltcospatqu

and

F psq “
1

`

s` 3
2

˘2
´ 1

22

“ 2
1{2

`

s` 3
2

˘2
´ 1

22

“ 2L
"

e´3t{2 sinh

ˆ

t

2

˙*

.

Here, sinhptq “ pet ´ e´tq{2. Denote fptq “ 2e´3t{2 sinhpt{2q and gptq “ cospatq. Using the
convolution theorem, we have

ψptq “ L´1tΨpsqu “ pf ˚ gqptq “
ż t

0
fpt´ τqgpτqdτ

“ 2

ż t

0
e´3pt´τq{2 sinh

ˆ

t´ τ

2

˙

cospaτqdτ.

Hence, the solution yptq can be written as

yptq “ φptq ` ψptq “ 2e´t ´ e´2t ` 2

ż t

0
e´3pt´τq{2 sinh

ˆ

t´ τ

2

˙

cospaτqdτ.

We remark that one can use the following (indefinite) integration identity

ż

eατ cospβτqdτ “
eατ

α2 ` β2
pα cospβτq ` β sinpβτqq ` C

to simplify the convolution integral with pα, βq “ p1, aq and pα, βq “ p2, aq to calculate ψptq. As
a result, we have

ψptq “ e´3t{2
ż t

0
e3τ{2

´

ept´τq{2 ´ e´pt´τq{2
¯

cospaτqdτ

“ e´t
ż t

0
eτ cospaτqdτ ´ e´2t

ż t

0
e2τ cospaτqdτ

“ e´t
ż t

0
eτ cospaτqdτ ´ e´2t

ż t

0
e2τ cospaτqdτ

“ e´t
ˆ

eτ

1` a2
pcospaτq ` a sinpaτq

ˇ

ˇ

ˇ

τ“t

τ“0

˙

´ e´2t
ˆ

e2τ

4` a2
p2 cospaτq ` a sinpaτq

ˇ

ˇ

ˇ

τ“t

τ“0

˙

“
e´t

1` a2
`

et cospatq ` aet sinpatq ´ 1
˘

´
e´2t

4` a2
`

2e2t cospatq ` ae2t sinpatq ´ 2
˘

“
1

a2 ` 1

`

cospatq ` a sinpatq ´ e´t
˘

´
1

a2 ` 4

`

2 cospatq ` a sinpatq ´ 2e´2t
˘

.
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6.7 Exercises

We denote ucptq the unit step function at the point c ě 0 and δpt´ t0q the Dirac delta function
at the point t0.

1. Find the Laplace transform Ltfptqu of the given functions fptq.

(a) fptq “ teat, where a is a real constant.

(b) fptq “ t2 sinpatq, where a is a real constant.

(c) fptq “

"

0, t ă 2,
pt´ 2q2, t ě 2.

Hint: we can write fptq “ u2ptqpt´ 2q2.

2. Find the functions fptq such that Ltfptqupsq “ F psq.

(a) F psq “
3

s2 ` 4
.

(b) F psq “
1´ 2s

s2 ` 4s` 5
.

3. Use the Laplace transform to solve the given initial value problems.

(a) y2 ` 9y “ cosp2tq, yp0q “ 1, y1p0q “ 0.

(b) y2 ` 3y1 ` 2y “ 1´ u10ptq, yp0q “ 0, y1p0q “ 0.

(c) y2 ` y1 `
5

4
y “ p1´ uπptqq sinptq, yp0q “ 0, y1p0q “ 0.

(d) y2 `
1

2
y1 ` y “ δpt´ 1q, yp0q “ 0, y1p0q “ 0.

4. Find the Laplace transform of the given function

fptq “

ż t

0
sinpt´ τq cos τdτ

using the convolution theorem.

5. Find the inverse Laplace transform of the given function

F psq “
s

ps` 1qps2 ` 4q

using the convolution theorem.
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Exercises

There are 3 questions in this assignment. Answer all. Please write down your name and UIN.
The deadline is 11:59 pm (CDT), Nov 6 2022.

We denote ucptq the unit step function at the point c ě 0 and δpt´ t0q the Dirac delta function
at the point t0.

1. Find the Laplace transform Ltfptqu of the given functions fptq.

(a) fptq “ teat, where a is a real constant.

(b) fptq “ t2 sinpatq, where a is a real constant.

(c) fptq “

"

0, t ă 2,
pt´ 2q2, t ě 2.

Hint: we can write fptq “ u2ptqpt´ 2q2.

(d) (Optional for 5 points) fptq “

$

&

%

t 0 ď t ď 1,
2´ t 1 ă t ď 2,
0 t ą 2.

Hint: can you write fptq as the

sum of linear functions times multiplying by step functions?

2. Find the functions fptq such that Ltfptqupsq “ F psq.

(a) F psq “
3

s2 ` 4
.

(b) F psq “
1´ 2s

s2 ` 4s` 5
.

3. Use the Laplace transform to solve the given initial value problems.

(a) y2 ` 9y “ cosp2tq, yp0q “ 1, y1p0q “ 0.

(c) y2 ` y1 `
5

4
y “ p1´ uπptqq sinptq, yp0q “ 0, y1p0q “ 0.
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Selected Reference Solution

1. (a) Ltteatu “ 1

ps´ aq2
.

(b) Ltt2 sinpatqu “ ´
2apa2 ´ 3s2q

ps2 ` a2q3
.

(c) Ltu2ptqpt´ 2q2u “ 2e´2ss´3.

2. (a) fptq “
3

2
sinp2tq.

(b) fptq “ e´2tp5 sinptq ´ 2 cosptqq.

3. (a) yptq “ cosp3tq `
1

3
rsinp3tq ˚ cosp2tqs “

1

5
pcosp2tq ` 4 cosp3tqq.
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Chapter 7

Systems of First-Order Linear
Equations

In this chapter, we study the system of first-order linear differential equations that arise in many
physical problems. To study the system of linear differential equations, we have to utilize some
of the elementary aspects of linear algebra to unify the presentation.

7.1 Introduction

System of differential equations arises naturally in problem involving several dependent variables,
each of which is a function of the same single independent variable. For instance, if we consider
the spring-mass system with two objects with different external forces for each object, we end
up with a system of equations: if we denote x1 the displacement for the first object and x2 for
the second, then we have

m1x
2
1ptq “ k2px2 ´ x1q ´ k1x1 ` F1ptq “ ´pk1 ` k2qx1 ` k2x2 ` F1ptq,

m2x
2
2ptq “ ´k3x2 ´ k2px2 ´ x1q ` F2ptq “ k2x1 ´ pk2 ` k3qx2 ` F2ptq.

(7.1)

Here, k1, k2, and k3 are spring constants, and m1, m2 are mass of the objects respectively.
The external forces for F1 and F2 are acting on the objects. This is a second-order system of
differential equations.

For higher order equation, we can also rewrite it as a system of first-order equations, which is
easier to handle using numerical methods. Almost all codes for generating numerical approxima-
tions to solutions of differential equations are capable for systems of first-order equations. The
following example demonstrates how easy it is to make the transformation from a second-order
differential equation to a system of two first-order differential equations.

Example 7.1.1. Rewrite the following spring-mass system

u2 `
1

8
u1 ` u “ 0

as a system of first-order equations.

Solution. We write x1 “ u and x2 “ u1. Then it follows that x11 “ x2. Further, u2 “ x12. Then,
by substituting for u, u1, and u2, we get

x12 `
1

8
x2 ` x1 “ 0 ðñ x12 “ ´x1 ´

1

8
x2.

129
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Thus, x1 and x2 satisfy the following system of two first-order equations

x11 “ x2,

x12 “ ´x1 ´
1

8
x2.

(7.2)

The governing equation of motion of a spring-mass system

mu2 ` γu1 ` ku “ F ptq

can also be transformed into a system of first-order differential equations in a same manner.

To transform an arbitrary n-th order equation

ypnq “ F pt, y, y1, y2, ¨ ¨ ¨ , ypn´1qq

into a system of n first-order differential equations, we extend the method in the above example
by introducing x1, x2, ¨ ¨ ¨ , xn, such that

x1 “ y, x2 “ y1, x3 “ y2, ¨ ¨ ¨ , xn “ ypn´1q.

It then follows that

x11 “ x2,

x12 “ x3,

...

x1n´1 “ xn,

x1n “ F pt, x1, x2, ¨ ¨ ¨ , xnq.

(7.3)

More generally, we consider the system of first-order equations as follows:

x11 “ F1pt, x1, x2, ¨ ¨ ¨ , xnq,

x12 “ F2pt, x1, x2, ¨ ¨ ¨ , xnq,

...

x1n “ Fnpt, x1, x2, ¨ ¨ ¨ , xnq.

(7.4)

The above formulation includes almost all cases of interest. Much of the more advanced theory
of differential equations is devoted to such systems. A solution of the system (7.4) (defined on
some interval) consists of n functions

x1 “ φ1ptq, x2 “ φ2ptq, ¨ ¨ ¨ , xn “ φptq

where each function is differentiable at all points in the interval and satisfy the system of
equations (7.4). In addition to the given system of equations, there may also be given n initial
conditions of the form

x1pt0q “ x01, x2pt0q “ x02, ¨ ¨ ¨ , xnpt0q “ x0n,

where t0 is a specified value of t in the interval, and x0i ’s are prescribed numbers. This system
of equations and the initial conditions together form an initial-value problem.
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7.2 Matrices

For both theoretical and computational reasons, it is advisable to bring some of the results of
linear algebra to bear on the initial value problem for a system of linear differential equations.
In this section, we present a brief summary of the facts that will be needed later. More details
can be found in any elementary book on linear algebra.

Definition 7.2.1 (Matrix). An nˆm matrix A is a rectangular array of elements with n rows
and m columns in which not only is the value of an element important, but also its position in
the array. That is,

A “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1,m´1 a1m
a21 a22 ¨ ¨ ¨ a2,m´1 a2m
...

...
. . .

...
...

an1 an2 ¨ ¨ ¨ an,m´1 anm

˛

‹

‹

‹

‚

.

We sometimes denote A “ paijq. If n “ m, then the matrix is called a square matrix of order n.

Definition 7.2.2 (Transpose). Given an nˆm matrix A “ paijq, we define its transpose as an
mˆ n matrix, denoted AT , as follows:

AT “

¨

˚

˚

˚

˚

˚

˝

a11 a21 ¨ ¨ ¨ an1
a12 a22 ¨ ¨ ¨ an2
...

...
. . .

...
a1,m´1 a2,m´1 ¨ ¨ ¨ an,m´1
a1m a2m ¨ ¨ ¨ anm

˛

‹

‹

‹

‹

‹

‚

.

Definition 7.2.3 (Adjoint). Given an nˆm matrix A “ paijq, we define its adjoint as an mˆn
matrix, denoted as A˚, as follows:

A˚ “

¨

˚

˚

˚

˚

˚

˝

a11 a21 ¨ ¨ ¨ an1
a12 a22 ¨ ¨ ¨ an2
...

...
. . .

...
a1,m´1 a2,m´1 ¨ ¨ ¨ an,m´1
a1m a2m ¨ ¨ ¨ anm

˛

‹

‹

‹

‹

‹

‚

.

Here, a is the complex conjugate of any complex number a.

Example 7.2.4. Let A be a matrix as follows:

A “

ˆ

3 2´ i
4` 3i ´5` 2i

˙

.

The transpose and adjoint of A are

AT “

ˆ

3 4` 3i
2´ i 5` 2i

˙

and A˚ “

ˆ

3 4´ 3i
2` i 5´ 2i

˙

.

Definition 7.2.5 (Equivalence of matrices). Two matrices A and B are equal if they have the
same number of rows and columns, say n ˆ m, and if aij “ bij , for each i “ 1, ¨ ¨ ¨ , n, and
j “ 1, ¨ ¨ ¨ ,m.

Example 7.2.6. The following matrix

A “

ˆ

2 ´1 7
3 1 0

˙
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has two rows and three columns, so it is of size 2 ˆ 3. Its entries are described by a11 “ 2,
a12 “ ´1, a13 “ 7, a21 “ 3, a22 “ 1, and a23 “ 0. In this case, the transpose of A is

AT “

¨

˝

2 3
´1 1
7 0

˛

‚.

Note that AT is of size 3ˆ 2. Based on Definition 7.2.5, we have

A “

ˆ

2 ´1 7
3 1 0

˙

‰

¨

˝

2 3
´1 1
7 0

˛

‚“ AT

because they differ in dimension.

In general, a matrix and its transpose are of same size only if this matrix is a square matrix.
We have the following definition if the matrix itself is equal to its transpose.

Definition 7.2.7 (Symmetric). A matrix M is called symmetric if MT “M .

Definition 7.2.8 (Self-adjoint). A matrix M is called self-adjoint if M˚ “M .

Example 7.2.9. The following matrix

M “

¨

˝

4 ´1 0
´1 4 ´1
0 ´1 4

˛

‚

is symmetric.

Two important operations performed on matrices are the sum of two matrices and the multipli-
cation of a matrix by a real number (scalar).

Definition 7.2.10 (Sum of two matrices). If A and B are both nˆm matrices, then the sum
of A and B, denoted A`B, is the nˆm matrix whose entries are aij` bij for each i “ 1, ¨ ¨ ¨ , n,
and j “ 1, ¨ ¨ ¨ ,m.

Definition 7.2.11 (Scalar multiplication). If A is an n ˆ m matrix and λ is a real number,
then the scalar multiplication of λ and A, denoted λA, is the n ˆm matrix whose entries are
λaij for each i “ 1, ¨ ¨ ¨ , n, and j “ 1, ¨ ¨ ¨ ,m.

Example 7.2.12. Determine A`B and λA when

A “

ˆ

2 ´1 7
3 1 0

˙

, B “

ˆ

4 2 ´8
0 1 6

˙

, and λ “ ´2.

Solution. We have

A`B “

ˆ

2` 4 ´1` 2 7´ 8
3` 0 1` 1 0` 6

˙

“

ˆ

6 1 ´1
3 2 6

˙

and

λA “

ˆ

´2p2q ´2p´1q ´2p7q
´2p3q ´2p1q ´2p0q

˙

“

ˆ

´4 2 ´14
´6 ´2 0

˙

.
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We have the following general properties for matrix addition and scalar multiplication. These
properties are sufficient to classify the set of all n ˆm matrices with real entries as a vector
space over the field of real numbers. We let O denote a matrix all of whose entries are 0 and
´A denote the matrix whose entries are ´aij .

Theorem 7.2.13. Let A, B, C be nˆm matrices and λ and µ be real numbers. The following
properties of addition and scalar multiplication hold:

(i) A`B “ B `A; (ii) pA`Bq ` C “ A` pB ` Cq;
(iii) A`O “ O `A “ A; (iv) A` p´Aq “ ´A`A “ O;
(v) λpA`Bq “ λA` λB; (vi) pλ` µqA “ λA` µA;
(vii) λpµAq “ λµA; (viii) 1A “ A.

All these properties follow from similar results concerning the real numbers.

We introduce the notion of row and column vectors.

Definition 7.2.14 (Vector). The 1ˆ n matrix

x “
`

x1 x2 ¨ ¨ ¨ xn
˘

is called an n-dimensional row vector, and the nˆ 1 matrix

y “

¨

˚

˚

˚

˝

y1
y2
...
yn

˛

‹

‹

‹

‚

is called an n-dimensional column vector. We sometimes denote column vector as y “ py1, y2, ¨ ¨ ¨ , ynq
T .

A n-dimensional (column or row) vector 0n with all entries being zero is called n-dimensional
zero vector. We denote Rn the collection of all n-dimensional column vectors.

Example 7.2.15. Any nˆ n matrix A can be understood as an nˆ n array, or a collection of
n-dimensional column vectors:

A “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

... ¨ ¨ ¨
...

an1 an2 ¨ ¨ ¨ ann

˛

‹

‹

‹

‚

.

Each column of the matrix A is a n-dimensional vector.

Definition 7.2.16. The set of n-dimensional column vectors teiu
n
i“1:

e1 “

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

, e2 “

¨

˚

˚

˚

˝

0
1
...
0

˛

‹

‹

‹

‚

, ¨ ¨ ¨ , and en “

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

is called a natural basis of Rn. We remark that any n-dimensional column vector x “ pxiq
n
i“1

can be written in the linear combination of the basis vectors teiu
n
i“1 as follows:

x “

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

“ x1

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

` x2

¨

˚

˚

˚

˝

0
1
...
0

˛

‹

‹

‹

‚

` ¨ ¨ ¨ ` xn

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

“ x1e1 ` x2e2 ` ¨ ¨ ¨xnen.
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Definition 7.2.17 (Identity matrix of order n). We define

In :“ pe1 e2 ¨ ¨ ¨ enq “

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

to be the identity matrix of order n.

Definition 7.2.18 (Matrix-vector multiplication). Given an n ˆ m matrix A “ paijq and an
m-dimensional column vector y “ py1, y2, ¨ ¨ ¨ , ymq

T , the n-dimensional column vector is defined
to be their product x “ Ay: for each i “ 1, ¨ ¨ ¨ , n,

x “ Ay “

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

, where xi “
m
ÿ

j“1

aijyj .

One can understand the matrix-vector multiplication from another point of view: the new vector
x “ Ay is a linear combination of the columns of the matrix A. That is,

x “ Ay “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1m
a21 a22 ¨ ¨ ¨ a2m
...

...
. . .

...
an1 an2 ¨ ¨ ¨ anm

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

y1
y2
...
ym

˛

‹

‹

‹

‚

“ y1

¨

˚

˚

˚

˝

a11
a21
...
an1

˛

‹

‹

‹

‚

` y2

¨

˚

˚

˚

˝

a12
a22
...
an2

˛

‹

‹

‹

‚

` ¨ ¨ ¨ ` ym

¨

˚

˚

˚

˝

a1m
a2m

...
anm

˛

‹

‹

‹

‚

.

Remark. One may easily check that Inx “ x for any n-dimensional vector x P Rn.

Example 7.2.19. Let A be a 2ˆ 3 matrix as in Example 7.2.6 and y “ p1, 2, 3qT . Then, their
product is

x “ Ay “

ˆ

2 ´1 7
3 1 0

˙

¨

˝

1
2
3

˛

‚“

ˆ

2´ 1 ¨ 2` 7 ¨ 3
3` 1 ¨ 2` 0 ¨ 3

˙

“

ˆ

21
5

˙

.

Moreover, we can understand this operation from another point of view:

x “ Ay “ 1 ¨

ˆ

2
3

˙

` 2 ¨

ˆ

´1
1

˙

` 3 ¨

ˆ

7
0

˙

“

ˆ

21
5

˙

.

We can use this matrix-vector multiplication to define general matrix-matrix multiplication.

Definition 7.2.20 (Matrix-matrix multiplication). Let A be an nˆm matrix and B an mˆ p
matrix. The matrix product of A and B, denoted AB, is an n ˆ p matrix C “ AB whose
entries cij are

cij “
m
ÿ

k“1

aikbkj “ ai1b1j ` ai2b2j ` ¨ ¨ ¨ ` aimbmj ,

for each i “ 1, 2, ¨ ¨ ¨ , n and j “ 1, 2, ¨ ¨ ¨ , p.

The computation of cij can be viewed as the multiplication of the entries of the i-th row of A
with corresponding entries in the j-th column of B, followed by a summation; that is,

cij “ pai1, ai2, ¨ ¨ ¨ , aimq

¨

˚

˚

˚

˝

b1j
b2j
...
bmj

˛

‹

‹

‹

‚

.
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This explains why the number of columns of A must equal the number of rows of B for the
product AB to be defined. Moreover, one can also understand matrix-matrix multiplication in
the following sense:

AB “ A

¨

˚

˚

˚

˝

b11 b12 ¨ ¨ ¨ b1p
b21 b22 ¨ ¨ ¨ b2p
...

... ¨ ¨ ¨
...

bm1 bm2 ¨ ¨ ¨ bmp

˛

‹

‹

‹

‚

“ A pb1 b2 ¨ ¨ ¨ bpq “ pAb1 Ab2 ¨ ¨ ¨ Abpq ,

where bj is the j-th column of the matrix B for j “ 1, 2, ¨ ¨ ¨ , p. The following example should
serve to clarify the matrix multiplication process.

Example 7.2.21. Determine all possible produces of the matrices:

A “

¨

˝

3 2
´1 1
1 4

˛

‚, B “

ˆ

2 1 ´1
3 1 2

˙

,

C “

¨

˝

2 1 0 1
´1 3 2 1
1 1 2 0

˛

‚, and D “

ˆ

1 ´1
2 ´1

˙

.

Solution. The size of the matrices are

A : 3ˆ 2, B : 2ˆ 3, C : 3ˆ 4, and D : 2ˆ 2.

The product that can be defined, and their dimensions, are:

AB : 3ˆ 3, BA : 2ˆ 2, AD : 3ˆ 2, BC : 2ˆ 4, DB : 2ˆ 3, and DD “ D2 : 2ˆ 2.

These products are

AB “

¨

˝

12 5 1
1 0 3
14 5 7

˛

‚, BA “

ˆ

4 1
10 15

˙

, AD “

¨

˝

7 ´5
1 0
9 ´5

˛

‚,

BC “

ˆ

2 4 0 3
7 8 6 4

˙

, DB “

ˆ

´1 0 ´3
1 1 ´4

˙

, and D2 “

ˆ

´1 0
0 ´1

˙

.

Notice that although the matrix products AB and BA are both defined, their results are very
different: they do not even have the same dimension. We say that the matrix product operation
is not commutative, that is, products in reverse order can differ. This is the case even when
both products are defined and are of the same dimension. Almost any example will show this,
for example,

ˆ

1 1
1 0

˙ˆ

0 1
1 1

˙

“

ˆ

1 2
0 1

˙

whereas

ˆ

0 1
1 1

˙ˆ

1 1
1 0

˙

“

ˆ

1 0
2 1

˙

.

Certain important operations involving matrix product do hold, however, as indicated in the
following result.

Theorem 7.2.22. Let A be nˆm matrix, B be an mˆ k matrix, C be a k ˆ p matrix, D be
an mˆ k matrix, and λ be a real number. The following properties hold:
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• ApBCq “ pABqC;

• ApB `Dq “ AB `AD;

• λpABq “ ApλBq.

Recall that matrices that have the same number of rows as columns are called square matrix
and they are important in applications. We summarize the terminology used in this Chapter.

Definition 7.2.23. Let A be a matrix. Then,

• A is called a square matrix if it has the same number of rows as columns.

• A is called a diagonal matrix if it is a square matrix with aij “ 0 if i ‰ j.

By definition, the identity matrix of order n is a diagonal matrix whose diagonal entries are
all 1s. When the size of In is clear, this matrix is generally written simply as I. (See Definition
7.2.17)

Example 7.2.24. Consider the identity matrix of order three,

I3 “

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚.

If A is any 3ˆ 3 matrix, then

AI3 “

¨

˝

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

‚

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚“

¨

˝

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

‚“ A.

One can also check that I3A “ A. The identity matrix In commutes with any nˆ n matrix A;
that is, the order of multiplication does not matter,

InA “ AIn “ A.

Keep in mind that this property of commuting is not true in general (i.e., AB ‰ BA is not true
in general), even for square matrices.

Definition 7.2.25 (Upper and lower triangular). An upper-triangular nˆn matrix U “ puijq
has, for each j “ 1, 2, ¨ ¨ ¨ , n, the entries

uij “ 0, for each i “ j ` 1, j ` 2, ¨ ¨ ¨ , n;

and a lower-triangular nˆ n matrix L “ p`ijq has, for each j “ 1, 2, ¨ ¨ ¨ , n, the entries

`ij “ 0, for each i “ 1, 2, ¨ ¨ ¨ , j ´ 1.

We remark that a diagonal matrix is both upper triangular and lower triangular because its only
nonzero entries must lie on the main diagonal.

Definition 7.2.26 (Invertible matrix). Assume that a square matrix A of order n is given. If
there exist a set of n-dimensional vectors tviu

n
i“1 such that

Avi “ ei for all i “ 1, 2, ¨ ¨ ¨ , n,
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where ei’s are the natural basis of Rn. Then, the matrix A is called invertible (or nonsingular)
and the matrix containing all vectors tviu

n
i“1 is called the inverse of A, denoting A´1. That is,

A´1 “ pv1 v2 ¨ ¨ ¨ vnq .

Moreover, we have AA´1 “ A´1A “ In. A matrix without an inverse is called singular (or
noninvertible).

The following properties regarding matrix inverses follow from the definition above.

Theorem 7.2.27. For any invertible nˆ n matrix A:

• A´1 is unique;

• A´1 is nonsingular and pA´1q´1 “ A;

• If B is also a nonsingular nˆ n matrix, then pABq´1 “ B´1A´1.

Example 7.2.28 (Magic Formula for 2ˆ 2). Let A be 2ˆ 2 as follows:

A “

ˆ

a b
c d

˙

.

Let B be another 2ˆ 2 matrix such that

B “
1

ad´ bc

ˆ

d ´b
´c a

˙

.

Verify that B “ A´1 (i.e. AB “ BA “ I2).

Solution. We verify one way AB “ I2 (the another way can also be verified similarly). By
straightforward computation, we have

AB “
1

ad´ bc

ˆ

a b
c d

˙ˆ

d ´b
´c a

˙

“
1

ad´ bc

ˆ

ad´ bc ´ab` ba
cd´ dc ´bc` ad

˙

“

ˆ

1 0
0 1

˙

“ I2.

Example 7.2.29. Let

A “

¨

˝

1 2 ´1
2 1 0
´1 1 2

˛

‚ and B “
1

9

¨

˝

´2 5 ´1
4 ´1 2
´3 3 3

˛

‚.

One can check that B “ A´1.

Recall the transpose of a given matrix A, denoted AT . The proof of the next result follows
directly from the definition of the transpose.

Theorem 7.2.30. The following operations involving the transpose of a matrix hold whenever
the operation is possible:

• pAT qT “ A;

• pABqT “ BTAT ;
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• pA`BqT “ AT `BT ;

• If A´1 exists, then pA´1qT “ pAT q´1.

We sometimes need to consider vectors of matrices whose elements are functions of t. We write

xptq “

¨

˚

˝

x1ptq
...

xnptq

˛

‹

‚

and Aptq “

¨

˚

˚

˚

˝

a11ptq ¨ ¨ ¨ a1nptq
a21ptq ¨ ¨ ¨ a2nptq

...
...

am1ptq ¨ ¨ ¨ amnptq

˛

‹

‹

‹

‚

,

respectively. The matrix Aptq is said to be continuous at t “ t0 or on an interval I “ rα, βs if
each element of A is a continuous function at the given point or on the given interval I. Similarly,
Aptq is said to be differentiable if each of its elements is differentiable and we denote

A1ptq “
dA

dt
“

ˆ

daij
dt

˙

.

Note that A1ptq is a matrix of the same size as Aptq, where we take the derivative elementwise.
In the same way, the integral of a matrix function is defined as

ż b

a
Aptq dt “

ˆ
ż b

a
aijptq dt

˙

.

It is again a matrix of the same size as Aptq, where we take integration elementwise.

Example 7.2.31. Let Aptq be given as follows:

Aptq “

ˆ

sin t t
1 cos t

˙

.

Then, we have

A1ptq “

ˆ

cos t 1
0 ´ sin t

˙

and

ż π

0
Aptqdt “

ˆ

2 π2{2
π 0

˙

.

Many of the rules of elementary calculus extend easily to matrix functions. Let A “ Aptq and
B “ Bptq be matrix functions and C be a constant matrix. Then, we have

1. pCAq1 “ CA1ptq;

2. pA`Bq1 “ A1ptq `B1ptq; and

3. pABq1 “ AptqB1ptq `A1ptqBptq.

In the first and the third equations, care must be taken in each term to avoid interchanging the
order of multiplication.

7.3 Systems of Linear Algebraic Equations

In this section, we review some results from linear algebra that will be used in this chapter.
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System of linear algebraic equations A set of n linear algebraic equation in n variables

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1,

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2,

...

an1x1 ` an2x2 ` ¨ ¨ ¨ ` annxn “ bn

can be written as

Ax “ b

where the n ˆ n matrix A and the n-dimensional vector b are given. The vector x is to be
determined. If b “ 0, the system is said to be homogeneous; otherwise, it is nonhomogeneous.

If the matrix A is invertible, then the solution vector x is x “ A´1b. In particular, the
homogeneous equation Ax “ 0 has only the trivial solution x “ 0 if A is invertible.

When A is singular, the homogeneous system has infinitely many nonzero solutions in addition
to the trivial solution. The situation for the nonhomogeneous system is more complicated. This
system has no solution unless b satisfies a certain further condition.

Example 7.3.1. Solve the system of equations

x1 ´ 2x2 ` 3x3 “ 7,

´x1 ` x2 ´ 2x3 “ ´5,

2x1 ´ x2 ´ x3 “ 4.

Solution. To solve the equation effectively, we form the so-called augmented matrix

¨

˝

1 ´2 3 7
´1 1 ´2 ´5
2 ´1 ´1 4

˛

‚

by adjoining the right-hand side vector to the coefficient matrix as an additional column. In
general, we can use the Gaussian elimination method to solve the system of linear equations.
That is, we perform several row operators to turn the left-hand side matrix into a form that is
easier to solve.

Linear dependence and independence. A collection of k vectors xp1q, ¨ ¨ ¨ ,xpkq is said to be
linearly dependent if there exists a set of real or complex numbers c1, ¨ ¨ ¨ , ck at least one of
which is nonzero, such that

c1x
p1q ` ¨ ¨ ¨ ` ckx

pkq “ 0.

On the other hand, if the only values of the coefficients c1, ¨ ¨ ¨ , ck are c1 “ ¨ ¨ ¨ “ ck “ 0, then
xp1q, ¨ ¨ ¨ ,xpkq are said to be linearly independent.

Example 7.3.2. Determine whether the vectors

xp1q “

¨

˝

1
2
´1

˛

‚, xp1q “

¨

˝

2
1
3

˛

‚, xp3q “

¨

˝

´4
1
´11

˛

‚

are linearly independent or dependent.
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Solution. To determine whether xp1q, xp2q, and xp3q are linearly dependent or not, we seek
constants c1, c2, and c3 such that

c1x
p1q ` c2x

p2q ` c3x
p3q “ 0.

Eigenvalues and eigenvectors. The equation

Ax “ y

can be viewed as a linear transformation that maps a given vector x into a new vector y. Vectors
that are transformed into multiples of themselves are important in many applications, including
finding solutions to system of first-order linear differential equations with constant coefficients.

To find such a vector, we set y “ λx, where λ is a scalar and we seek solutions of the equation

Ax “ λx ðñ pA´ λInqx “ 0.

The latter equation has nonzero solutions if and only if λ is chosen so that

detpA´ λInq “ 0. (7.5)

Here, In is the identity matrix of order n. This equation is a polynomial equation of degree n
in λ and is called the characteristic equation of the matrix A. Such values of λ satisfying
(7.5) is called the eigenvalues of the matrix A and the nonzero vectors x satisfying Ax “ λx are
called eigenvectors corresponding to that eigenvalue λ.

Example 7.3.3. Find the eigenvalues and eigenvectors of the matrix

A “

ˆ

3 ´1
4 ´2

˙

.

Solution. The eigenvalues λ and eigenvectors x satisfy the equation pA´ λI2qx “ 0 or

ˆ

3´ λ ´1
4 ´2´ λ

˙ˆ

x1
x2

˙

“

ˆ

0
0

˙

.

The eigenvalues are the roots of the following characteristic equation:

detpA´ λI2q “

ˇ

ˇ

ˇ

ˇ

3´ λ ´1
4 ´2´ λ

ˇ

ˇ

ˇ

ˇ

“ λ2 ´ λ´ 2 “ pλ´ 2qpλ` 1q “ 0.

Thus the eigenvalues are λ1 “ 2 and λ2 “ ´1. To find the eigenvectors, we replace λ by each of
the eigenvalues in turn and find the values of x1 and x2. For λ “ 2, we have

ˆ

1 ´1
4 ´4

˙ˆ

x1
x2

˙

“

ˆ

0
0

˙

.

Hence, each row of this vector equation leads to the condition x1 ´ x2 “ 0, so x1 and x2 are
equal but their values are not determined. If x1 “ c, then x2 “ c also, and the eigenvector xp1q

is

xp1q “ c

ˆ

1
1

˙

, c ‰ 0.
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Thus, for the eigenvalue λ1 “ 2, there is an infinite family of eigenvectors, indexed by the
arbitrary constant c. We choose a single number of this family as a representative of the rest;
in this example, it seems simplest to let c “ 1. Then, we write

xp1q “

ˆ

1
1

˙

and remember that any nonzero multiple of this vector is also an eigenvector.

Now, setting λ “ ´1 we have
ˆ

4 ´1
4 ´1

˙ˆ

x1
x2

˙

“

ˆ

0
0

˙

.

Again, we obtain a single condition on x1 and x2, namely, 4x1 ´ x2 “ 0. Thus, the eigenvector
corresponding to the eigenvalue λ2 “ ´1 is

xp2q “

ˆ

1
4

˙

or any nonzero multiple of this vector.

Example 7.3.4. Find the eigenvalues and eigenvectors of the matrix

A “

¨

˝

0 1 1
1 0 1
1 1 0

˛

‚.

Solution. The eigenvalues λ and eigenvectors x satisfy the equation pA´ λI3qx “ 0 or
¨

˝

´λ 1 1
1 ´λ 1
1 1 ´λ

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0
0
0

˛

‚.

The eigenvalues are the roots of the equation

detpA´ λI3q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´λ 1 1
1 ´λ 1
1 1 ´λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ´λ3 ` 3λ` 2 “ pλ´ 2qpλ` 1q2 “ 0.

The roots are λ1 “ 2, λ2 “ λ3 “ ´1. To find the eigenvector xp1q corresponding to the eigenvalue
λ1, we substitute λ “ 2 and solve

¨

˝

´2 1 1
1 ´2 1
1 1 ´2

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0
0
0

˛

‚.

We can use elementary row operations to reduce this to the equivalent system
¨

˝

´2 1 1
0 1 ´1
0 0 0

˛

‚

¨

˝

x1
x2
x3

˛

‚“

¨

˝

0
0
0

˛

‚.

Solving this system yields the eigenvector

xp1q “

¨

˝

1
1
1

˛

‚.
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For λ “ ´1, it reduces to the single equation

x1 ` x2 ` x3 “ 0.

Thus values for two of the quantities x1, x2, and x3 can be chosen arbitrarily, and the third is
determined. For example, if x1 “ c1 and x2 “ c2, then x3 “ ´c1 ´ c2. In vector notation, we
have

x “

¨

˝

c1
c2

´c1 ´ c2

˛

‚“ c1

¨

˝

1
0
´1

˛

‚` c2

¨

˝

0
1
´1

˛

‚.

For example, by choosing c1 “ 1 and c2 “ 0, we obtain the eigenvector

xp2q “

¨

˝

1
0
´1

˛

‚.

Any nonzero multiple of xp2q is also an eigenvector, but a second linearly independent eigenvector
can be found by making another choice of c1 and c2, for instance c1 “ 0 and c2 “ 1. In this
case, we obtain

xp3q “

¨

˝

0
1
´1

˛

‚,

which is linearly independent of xp2q. Therefore, in this example, two linearly independent
eigenvectors are associated with the eigenvalue λ “ ´1.

7.4 Basic Theory of Systems of First-Order Linear Equations

In this section, we introduce some theoretical results of system of first-order linear equations.

We consider the following a system of n first-order linear equations

x11 “ p11ptqx1 ` ¨ ¨ ¨ ` p1nxn ` g1ptq,

x12 “ p21ptqx1 ` ¨ ¨ ¨ ` p2nxn ` g2ptq,

...

x1n “ pn1ptqx1 ` ¨ ¨ ¨ ` pnnxn ` gnptq.

(7.6)

or equivalently

x1 “ Pptqx` gptq. (7.7)

A vector x “ xptq is said to be a solution of (7.7) if its components satisfy the system of equations
(7.6). When gptq “ 0, i.e.,

x1 “ Pptqx, (7.8)

the system is called homogeneous. Just as before, once the homogeneous equation has been
solved, there are several methods that can be used to solve the nonhomogeneous one. We
summarize some useful theoretical results of homogeneous system of first-order linear equations.

• If x and y are solutions of (7.8), so is their linear combination c1x` c2y for any constants
c1 and c2.
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• If xp1q,xp2q, ¨ ¨ ¨ ,xpnq are solutions of (7.8), then the determinant of the following matrix

Xptq “
”

xp1q,xp2q, ¨ ¨ ¨ ,xpnq
ı

is called the Wronskian of the n solutions and is denoted as

W rxp1q,xp2q, ¨ ¨ ¨ ,xpnqs “ detpXptqq.

• If xp1q,xp2q, ¨ ¨ ¨ ,xpnq are linearly independent solutions of (7.8), then each solution xptq of
(7.8) can be expressed as

xptq “ c1x
p1q ` c2x

p2q ` ¨ ¨ ¨ ` cnx
pnq

in exactly one way. We call this is a general solution of (7.8). The set txp1q,xp2q, ¨ ¨ ¨ ,xpnqu
is called a fundamental set of solutions.

• Let xp1q,xp2q, ¨ ¨ ¨ ,xpnq be the solutions of the system (7.8) that satisfy the initial conditions

xp1qpt0q “

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

, xp2qpt0q “

¨

˚

˚

˚

˝

0
1
...
0

˛

‹

‹

‹

‚

, ¨ ¨ ¨ , xpnqpt0q “

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

for some given t0, then xp1q,xp2q, ¨ ¨ ¨ ,xpnq form a fundamental set of solutions of (7.8).

• Let xptq be the solution of (7.8); If xptq “ uptq ` vptq is a complex-valued solution, then
its real part uptq and its imaginary part vptq are also solutions of (7.8).

7.5 Homogeneous Linear Systems with Constant Coefficients

We start to find solutions of the system of equation with constant coefficients

x1 “ Ax, (7.9)

where A is a constant nˆn matrix. In this chapter, we mainly focus on n “ 2 and n “ 3. When
n “ 1, the system reduces to a single first-order equation

x1 “ ax

where solution is xptq “ ceat with constant c. For n ą, we first look at the below example.

Example 7.5.1. Find the general solution of the system

x1 “ Ax, where A “

ˆ

2 0
0 ´3

˙

.

Solution. The matrix A is diagonal and we can write

x11 “ 2x1, x12 “ ´3x2.

Each of these equations involves only one of the unknown variables, so we can solve the two
equations separately. In this way, we find

x1 “ c1e
2t, x2 “ c2e

´3t,
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where c1 and c2 are arbitrary constants. Then, by writing the solution in vector form, we have

xptq “

ˆ

c1e
2t

c2e
´3t

˙

“ c1

ˆ

e2t

0

˙

` c2

ˆ

0
e´3t

˙

“ c1

ˆ

1
0

˙

e2t ` c2

ˆ

0
1

˙

e´3t.

Next, we define

xp1qptq “

ˆ

e2t

0

˙

, xp2q “

ˆ

0
e´3t

˙

,

then the Wronskian of these solutions is

W rxp1q,xp2qs “

ˇ

ˇ

ˇ

ˇ

e2t 0
0 e´3t

ˇ

ˇ

ˇ

ˇ

“ e´t ‰ 0.

Therefore, xp1q and xp2q form a fundamental set of solutions.

Let us extend the idea to the general system (7.9) by seeking solutions of the form

x “ vert

where the constant r and the vector v are to be determined. Substituting this into the system
(7.9), we have

rvert “ Avert ùñ Av “ rv.

That is, r is an eigenvalue of A and v is the eigenvector of A associated with r.

Example 7.5.2. Find the general solution of the system

x1 “ Ax, where A “

ˆ

1 1
4 1

˙

.

Solution. To find the solutions explicitly, we assume the solution has the form x “ vert. We
have to find eigenvalues of A and the associated eigenvector. To this aim, we solve

pA´ rI2qv “ 0 ðñ

ˆ

1´ r 1
4 1´ r

˙ˆ

v1
v2

˙

“

ˆ

0
0

˙

.

We have
ˇ

ˇ

ˇ

ˇ

1´ r 1
4 1´ 4

ˇ

ˇ

ˇ

ˇ

“ p1´ rq2 ´ 4 “ r2 ´ 2r ´ 3 “ pr ´ 3qpr ` 1q “ 0.

Thus, we have the eigenvalues of A to be r1 “ 3 and r2 “ ´1. When r “ 3, the two equations
reduce to the single equation

´2v1 ` v2 “ 0 ðñ v2 “ 2v1.

The eigenvector corresponding to r1 “ 3 can be taken as

vp1q “

ˆ

1
2

˙

.

Similarly, corresponding to r2 “ ´1, we find that v2 “ ´2v1, so the eigenvector can be taken as

vp2q “

ˆ

1
´2

˙

.
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The solutions xp1q and xp2q are

xp1qptq “ vp1qe3t “

ˆ

1
2

˙

e3t, xp2qptq “ vp2qe´t “

ˆ

1
´2

˙

e´t.

The Wronskian of these solutions is

W rxp1q,xp2qs “

ˇ

ˇ

ˇ

ˇ

e3t e´t

2e3t ´2e´t

ˇ

ˇ

ˇ

ˇ

“ ´4e2t ‰ 0.

Hence, xp1q and xp2q form a fundamental set of solutions, and the general solution is

xptq “ c1x
p1qptq ` c2x

p2qptq “ c1

ˆ

1
2

˙

e3t ` c2

ˆ

1
´2

˙

e´t,

where c1 and c2 are arbitrary constants.

7.6 Complex-Valued Eigenvalues

In this section we consider again the system of first-order linear equations

x1 “ Ax, (7.10)

where the coefficient matrix A is real-valued. If we seek the solutions of the form x “ vert,
then r and v are the eigenvalue of A and the corresponding eigenvector. It can be the case that
r is of complex value with a real-valued matrix A. If r1 “ λ ` iµ is an eigenvalue of A, then
r2 “ λ´ iµ is also an eigenvalue of A.

Example 7.6.1. Find the general solution of the system

x1 “ Ax, where A “

ˆ

´1{2 1
´1 ´1{2

˙

.

Solution. To find a fundamental set of solutions, we assume the solution has the form x “ vert

and obtain the set of linear equations

pA´ rI2qv “ 0 ðñ

ˆ

´1{2´ r 1
´1 ´1{2´ r

˙ˆ

v1
v2

˙

“

ˆ

0
0

˙

.

We have
ˇ

ˇ

ˇ

ˇ

´1{2´ r 1
´1 ´1{2´ r

ˇ

ˇ

ˇ

ˇ

“ r2 ` r `
5

4
“ 0.

Thus, we have the eigenvalues of A to be

r1 “ ´
1

2
` i, r2 “ ´

1

2
´ i.

A straightforward calculation shows that the corresponding eigenvectors are

vp1q “

ˆ

1
i

˙

, vp2q “

ˆ

1
´i

˙

.

Observe that vp1q and vp2q are also complex conjugates. Hence, we obtain a fundamental set of
solutions of the system:

xp1qptq “

ˆ

1
i

˙

ep´1{2`iqt, xp2qptq “

ˆ

1
´i

˙

ep´1{2´iqt.
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To obtain a set of real-valued solutions, we can choose the real and imaginary parts of either
xp1q or xp2q. In fact, using the Euler’s formula eit “ cos t` i sin t, we have

xp1qptq “

ˆ

1
i

˙

e´t{2pcos t` i sin tq “

ˆ

e´t{2 cos t

´e´t{2 sin t

˙

` i

ˆ

e´t{2 sin t

e´t{2 cos t

˙

.

Hence, a pair of real-valued solutions is

uptq “

ˆ

e´t{2 cos t

´e´t{2 sin t

˙

, vptq “

ˆ

e´t{2 sin t

e´t{2 cos t

˙

.

The Wronskian of uptq and vptq is

W ruptq,vptqs “

ˇ

ˇ

ˇ

ˇ

e´t{2 cos t e´t{2 sin t

´e´t{2 sin t e´t{2 cos t

ˇ

ˇ

ˇ

ˇ

“ e´tpcos2 t` sin2 tq “ e´t ‰ 0.

It follows that uptq and vptq form a fundamental set of (real-valued) solutions. Therefore, the
general solution is

xptq “ c1uptq ` c2vptq “ c1

ˆ

e´t{2 cos t

´e´t{2 sin t

˙

` c2

ˆ

e´t{2 sin t

e´t{2 cos t

˙

.

To summarize, for 2 ˆ 2 system A with real coefficients, let r1 “ λ ` iµ be an eigenvalue of A
and vp1q “ a` ib be the corresponding eigenvector. Then, we have

xp1qptq “ pa` ibqeλt`iµt “ pa` ibqeλtpcospµtq ` i sinpµtqq.

If we write

xp1qptq “ eλtpa cospµtq ´ b sinpµtqq
looooooooooooooomooooooooooooooon

“:uptq

`i eλtpa sinpµtq ` b cospµtqq
looooooooooooooomooooooooooooooon

“:vptq

,

uptq “ eλtpa cospµtq ´ b sinpµtqq,

vptq “ eλtpa sinpµtq ` b cospµtqq,

(7.11)

then uptq and vptq form a fundamental set of (real-valued) solutions of the system x1 “ Ax. In
this case, the general solution xptq can be written as

xptq “ c1uptq ` c2vptq,

where c1 and c2 are arbitrary constants.

Example 7.6.2. Find the solution of the system

x1 “ Ax, where A “

ˆ

1 ´5
1 3

˙

given the initial conditions

xp0q “

ˆ

1
1

˙

.
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Solution. We first find the eigenvalues and eigenvectors of A. To this aim, we expand the
characteristic polynomial detpA´ λI2q as follows:

detpA´ λI2q “

ˇ

ˇ

ˇ

ˇ

1´ λ ´5
1 3´ λ

ˇ

ˇ

ˇ

ˇ

“ p1´ λqp3´ λq ` 5 “ λ2 ´ 4λ` 8.

Completing the square and setting the characteristic polynomial to be 0, we obtain that

λ2 ´ 4λ` 8 “ pλ´ 2q2 ` 4 “ 0 ðñ λ “ 2˘ 2i.

Hence, we obtain that A has two complex eigenvalues

λ1 “ 2` 2i and λ2 “ 2´ 2i.

Next, we find the eigenvectors vp1q and vp2q associated with different eigenvalues λ1 and λ2,
respectively. For λ1 “ 2` 2i, we look for vp1q such that

pA´ λ1I2qv
p1q “

ˆ

´1´ 2i ´5
1 1´ 2i

˙

˜

v
p1q
1

v
p1q
2

¸

“

ˆ

0
0

˙

.

Hence, we can take v
p1q
1 “ ´1` 2i and v

p1q
2 “ 1. Thus,

vp1q “

ˆ

´1` 2i
1

˙

“

ˆ

´1
1

˙

` i

ˆ

2
0

˙

“ a` ib.

Then, letting λ “ 2 and µ “ 2 in (7.11) with such a and b above, we can write uptq and vptq as
follows:

uptq “ e2t
ˆ

´ cosp2tq ´ 2 sinp2tq
cosp2tq

˙

,

vptq “ e2t
ˆ

sinp2tq ` 2 cosp2tq
´ sinp2tq

˙

.

Hence, with arbitrary constants c1 and c2, the general solution xptq is

xptq “ c1uptq ` c2vptq.

To determine c1 and c2, we make use of the initial conditions: for t “ 0, we have

c1

ˆ

´1
1

˙

` c2

ˆ

2
0

˙

“

ˆ

1
1

˙

ðñ

ˆ

´1 2
1 0

˙ˆ

c1
c2

˙

“

ˆ

1
1

˙

.

As a result, we have
ˆ

c1
c2

˙

“ ´
1

2

ˆ

0 ´2
´1 ´1

˙ˆ

1
1

˙

“

ˆ

1
1

˙

and

xptq “ uptq ` vptq “ e2t
ˆ

cosp2tq ´ sinp2tq
cosp2tq ´ sinp2tq

˙

.
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7.7 Fundamental Matrices

Suppose that xp1qptq, ¨ ¨ ¨ ,xpnqptq form a fundamental set of solutions for the system

x1 “ Pptqx, (7.12)

then the matrix
Ψptq “ rxp1qptq, ¨ ¨ ¨ ,xpnqptqs

whose columns are the vectors xp1qptq, ¨ ¨ ¨ ,xpnqptq is said to be a fundamental matrix for the
system (7.12). Note that a fundamental matrix is non-singular since its columns are linearly
independent vectors. Each column of the fundamental matrix Ψ is a solution of (7.12). It
follows that Ψ satisfies the matrix differential equation

Ψ1 “ PptqΨ.

Example 7.7.1. The system

x1 “ Ax, where A “

ˆ

1 1
4 1

˙

has two solutions xp1q and xp2q:

xp1qptq “

ˆ

1
2

˙

e3t, xp2qptq “

ˆ

1
´2

˙

e´t,

whose Wronskian is nonzero. Thus, a fundamental matrix for such system is

Ψptq “

ˆ

e3t e´t

2e3t ´2e´t

˙

.

The solution of an initial-value problem can be written very compactly in terms of a fundamental
matrix. The general solution of equation (7.12) is

xptq “ c1x
p1qptq ` ¨ ¨ ¨ ` cnx

pnq “ Ψptqc,

where c is a constant vector with arbitrary components c1, c2, ¨ ¨ ¨ , cn. For an initial-value prob-
lem consisting of the system (7.12) and the initial condition

xpt0q “ x0,

where x0 is a given vector, it is only necessary to choose the vector c so as to satisfy the initial
condition. Hence, we have

Ψpt0qc “ x0 ùñ c “ Ψ´1pt0qx
0.

Therefore, the solution of the initial-value problem reads:

xptq “ ΨptqΨ´1pt0qx
0

given any fundamental matrix Ψptq. Sometimes it is convenient to find a special fundamental
matrix denoted by Φptq such that

Φpt0q “ In.

Then, the general solution of (7.12) is written as

xptq “ Φptqx0.

We will always reserve the symbol Φ to denote the fundamental matrix satisfying the condition
Φpt0q “ In.
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Example 7.7.2. For the system

x1 “ Ax, where A “

ˆ

1 1
4 1

˙

,

find the fundamental matrix Φ such that Φp0q “ I2.

Solution. Recall that the general solution of the system x1 “ Ax is

xptq “ c1

ˆ

1
2

˙

e3t ` c2

ˆ

1
´2

˙

e´t.

We have to find two solutions xp1qptq and xp2qptq such that

xp1qp0q “

ˆ

1
0

˙

, xp2qp0q “

ˆ

0
1

˙

.

Let xp1q be

xp1qptq “ c1

ˆ

1
2

˙

e3t ` c2

ˆ

1
´2

˙

e´t.

Then,

xp1qp0q “ c1

ˆ

1
2

˙

` c2

ˆ

1
´2

˙

“

ˆ

1
0

˙

ùñ c1 “ c2 “
1

2
.

Hence, we have

xp1qptq “
1

2

„ˆ

1
2

˙

e3t `

ˆ

1
´2

˙

e´t


“

¨

˚

˚

˝

e3t

2
`
e´t

2

e3t ´ e´t

˛

‹

‹

‚

.

Similarly, let xp2q be

xp2qptq “ d1

ˆ

1
2

˙

e3t ` d2

ˆ

1
´2

˙

e´t.

Then,

xp1qp0q “ d1

ˆ

1
2

˙

` d2

ˆ

1
´2

˙

“

ˆ

0
1

˙

ùñ d1 “
1

4
, d2 “ ´

1

4
.

Hence, we have

xp1qptq “
1

4

ˆ

1
2

˙

e3t ´
1

4

ˆ

1
´2

˙

e´t “

¨

˚

˚

˚

˝

e3t

4
´
e´t

4

e3t

2
`
e´t

2

˛

‹

‹

‹

‚

.

Therefore, we have

Φptq “

¨

˚

˚

˚

˝

e3t

2
`
e´t

2

e3t

4
´
e´t

4

e3t ´ e´t
e3t

2
`
e´t

2

˛

‹

‹

‹

‚

.
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7.8 Repeated Eigenvalues

We conclude our consideration of the linear homogeneous system of differential equations with
constant coefficients

x1 “ Ax (7.13)

with a discussion of the case in which the matrix A has a repeated eigenvalue.

Example 7.8.1. Find the general solution of the system

x1 “ Ax, where A “

ˆ

1 ´1
1 3

˙

.

Solution. The eigenvalues r and eigenvectors v satisfy the equation

pA´ rI2qv “ 0 ðñ

ˆ

1´ r ´1
1 3´ r

˙ˆ

v1
v2

˙

“

ˆ

0
0

˙

.

The eigenvalues are the roots of the equation

detpA´ rI2q “

ˇ

ˇ

ˇ

ˇ

1´ r ´1
1 3´ r

ˇ

ˇ

ˇ

ˇ

“ r2 ´ 4r ` 4 “ pr ´ 2q2 “ 0.

Thus, two eigenvalues are r1 “ r2 “ 2; that is, the eigenvalue 2 is a repeated one. To determine
the eigenvectors, we return to the equation with r “ 2 and this gives

v1 ` v2 “ 0.

Hence, the eigenvector corresponding to r “ 2 is

vp1q “

ˆ

1
´1

˙

,

or any nonzero multiple of this vector. Observe that there is only one linearly independent
eigenvector associated with the double eigenvalue.

To solve the system, we find that one of the solutions of the system is

xp1q “ vp1qer1t “

ˆ

1
´1

˙

e2t.

To find the second (linearly-independent) solution, we assume that the other solution has the
form

x “ vte2t `we2t,

where v and w are to be determined. Upon substituting this expression for x in the equation,
we obtain

2vte2t ` pv ` 2wqe2t “ Apvte2t `we2tq.

Equating coefficients of te2t and e2t on each side of the above equation, we have

2v “ Av and v ` 2w “ Aw

for the determination of v and w. Then, we can see that v is an eigenvector of A associated
with the eigenvalue r “ 2. We can choose v “ vp1q. Then, the vector w satisfies

pA´ 2I2qw “ v ðñ

ˆ

´1 ´1
1 1

˙ˆ

w1

w2

˙

“

ˆ

1
´1

˙

.
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Hence, we have w1 ` w2 “ ´1 so if w1 “ k, where k is arbitrary, then w2 “ ´1 ´ k. Then, we
obtain

w “

ˆ

k
´1´ k

˙

“

ˆ

0
´1

˙

` k

ˆ

1
´1

˙

.

Therefore, the solution x can be written as

x “ vte2t `we2t “

ˆ

1
´1

˙

te2t `

ˆ

0
´1

˙

e2t ` k

ˆ

1
´1

˙

e2t.

The last term is merely a multiple of the first solution xp1q and may be ignored, but the first
two terms constitute a new solution:

xp2q “

ˆ

1
´1

˙

te2t `

ˆ

0
´1

˙

e2t “

ˆ

te2t

´te2t ´ e2t

˙

.

One can verify that

W rxp1q,xp2qs “

ˇ

ˇ

ˇ

ˇ

e2t te2t

´e2t ´te2t ´ e2t

ˇ

ˇ

ˇ

ˇ

“ ´e4t ‰ 0.

Therefore, xp1q and xp2q form a fundamental set of solutions of the system. Then, the general
solution is

x “ c1x
p1q ` c2x

p2q “ c1

ˆ

1
´1

˙

e2t ` c2

„ˆ

1
´1

˙

te2t `

ˆ

0
´1

˙

e2t


.

In general, consider the system

x1 “ Ax,

and suppose that r “ ρ is a double eigenvalue of A, but that there is only one corresponding
eigenvector v (i.e. Av “ ρv). Then, one solution is

xp1q “ veρt.

The second solution is of the form

xp2q “ vteρt `weρt.

The vector w satisfies

pA´ ρIqw “ v.

Example 7.8.2. Find the solution of the system

x1 “ Ax, where A “

ˆ

1 ´4
4 ´7

˙

with the initial conditions

xp0q “

ˆ

3
2

˙

.
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Solution. The eigenvalues λ’s of A satisfies

0 “ detpA´ λI2q “

ˇ

ˇ

ˇ

ˇ

1´ λ ´4
4 ´7´ λ

ˇ

ˇ

ˇ

ˇ

“ pλ´ 1qpλ` 7q ` 16 “ λ2 ` 6λ` 9 “ pλ` 3q2.

Hence, there is only one (repeated) eigenvalue λ “ ´3 for A. The corresponding eigenvector v
satisfies

pA´ λI2qv “

ˆ

1´ λ ´4
4 ´7´ λ

˙ˆ

v1
v2

˙

“

ˆ

4 ´4
4 ´4

˙ˆ

v1
v2

˙

“

ˆ

0
0

˙

.

Hence, we can take

v “

ˆ

1
1

˙

.

One of the solution in the fundamental set of solutions is

xp1q “ ve´3t “

ˆ

1
1

˙

e´3t.

Next, we determine the vector w such that pA´ λIqw “ v:
ˆ

4 ´4
4 ´4

˙ˆ

w1

w2

˙

“

ˆ

1
1

˙

.

If we set w1 “ k, then we have w2 “ ´0.25` k. Hence, we have

w “

ˆ

k
´0.25` k

˙

“

ˆ

0
´0.25

˙

` k

ˆ

1
1

˙

.

Hence, another solution in the fundament set of solutions is

xp2q “ vte´3t `we´3t “

ˆ

1
1

˙

te´3t `

ˆ

0
´0.25

˙

e´3t ` k

ˆ

1
1

˙

e´3t.

Since the last term is just a multiple of xp1q, we can drop this term and simply rewrite

xp2q “

ˆ

1
1

˙

te´3t `

ˆ

0
´0.25

˙

e´3t.

Then, the fundamental matrix Ψptq reads

Ψptq “ e´3t
ˆ

1 t
1 t´ 0.25

˙

.

The general solution x can be written as

xptq “ Ψptqc, c “

ˆ

c1
c2

˙

.

In order to find the values of c1 and c2, we make use of the initial conditions and set

xp0q “

ˆ

3
2

˙

“ Ψp0qc “

ˆ

1 0
1 ´0.25

˙ˆ

c1
c2

˙

.

As a result, we have
ˆ

c1
c2

˙

“ ´4

ˆ

´0.25 0
´1 1

˙ˆ

3
2

˙

“

ˆ

´3
´4

˙

.

Hence, the solution to the system of differential equations is

xptq “ ´3xp1qptq ´ 4xp2qptq “

ˆ

´3e´3t ´ 4te´3t

´3e´3t ´ 4te´3t ` e´3t

˙

“ e´3t
ˆ

´3´ 4t
´2´ 4t

˙

.
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7.9 Nonhomogeneous Linear Systems

In this section, we turn to the nonhomogeneous system of linear first-order equations as follows:

x1 “ P ptqx` gptq, (7.14)

where xptq is the nˆ 1 solution vectors, P ptq is the nˆ n matrix, and gptq are nˆ 1 continuous
vector. By the same argument as in Section 3.5, the general solution of equation (7.14) can be
expressed as

xptq “ c1x
p1qptq ` ¨ ¨ ¨ ` cnx

pnqptq ` vptq,

where c1x
p1qptq ` ¨ ¨ ¨ ` cnx

pnqptq forms a general solution to the corresponding homogeneous
system x1ptq “ P ptqxptq, and vptq is a particular solution of the nonhomogeneous system (7.14).
We briefly describe several methods for determining vptq.

Diagonalization We begin with the case when P ptq “ A for some constant diagonal matrix
A. That is,

x1ptq “ Axptq ` gptq.

It is a system that is readily solved since each component of xi in the solution vector xptq satisfies
the first-order equation

x1iptq “ aixi ` giptq.

Here, we have

A “

¨

˚

˚

˚

˝

a1 0 ¨ ¨ ¨ 0
0 a2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ an

˛

‹

‹

‹

‚

.

Now we consider the case when A is not diagonal, but it can be diagonalized in the sense that
there is some matrix T such that

T´1AT “ D ðñ AT “ TD,

where D is a diagonal matrix. Here, T ’s columns contain the eigenvectors of A. Note that if A
is a constant matrix, so is T . Hence, if we write x “ Ty for another unknown vector y “ yptq,
then we have

x1ptq “ Ty1ptq “ ATyptq ` gptq ùñ T´1Ty1ptq “ pT´1AT qyptq ` T´1gptq “ Dy ` T´1gptq.

That is, we found that the unknown vector yptq satisfies

y1ptq “ Dy ` T´1gptq,

where D is diagonal. Thus, it is readily solved and once we found yptq, we can multiply y by
the matrix T to recover the desired solution vector xptq.

Example 7.9.1. Find the general solution of the system

x1ptq “

ˆ

´2 1
1 ´2

˙

x`

ˆ

2e´t

3t

˙

“ Ax` gptq.

Solution. Note that for the matrix A, the eigenvalues are r1 “ ´3 and r2 “ ´1 and that the
corresponding eigenvectors are

vp1q “

ˆ

1
´1

˙

and vp1q “

ˆ

1
1

˙

.
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Thus the general solution of the homogeneous system is

c1

ˆ

1
´1

˙

e´3t ` c2

ˆ

1
1

˙

e´t.

We can write T matrix to be

T “

ˆ

1 1
´1 1

˙

ùñ T´1 “

ˆ

1{2 ´1{2
1{2 1{2

˙

.

Moreover, we have

D “

ˆ

´3 0
0 ´1

˙

.

As a result, we have to solve

y1ptq “ Dyptq ` T´1gptq “

ˆ

´3 0
0 ´1

˙

yptq `

ˆ

e´t ´ .5t
e´t ` 1.5t

˙

.

Hence, we have y1 and y2 satisfy the first-order equations

y11 ` 3y1 “ e´t ` 0.5t,

y12 ` y2 “ e´t ´ 1.5t.
(7.15)

This implies that

y1ptq “ e´3t
ż
„

e2t `
t

2
e3t



dt` c1e
´3t “

e´t

2
`

1

18
p3t´ 1q ` c1e

´3t,

y2ptq “ e´t
ż
„

1´
3

2
tet



dt` c2e
´t “ te´t `

3

2
pt´ 1q ` c2e

´t.

(7.16)

Hence, we have

x “ Ty ùñ x1ptq “ y1ptq ` y2ptq and x2ptq “ ´y1ptq ` y2ptq.

Undetermined coefficients A second way to find a particular solution is the method of
undetermined coefficients.

Example 7.9.2. Find a particular solution of the system

x1ptq “

ˆ

´2 1
1 ´2

˙

x`

ˆ

2e´t

3t

˙

“ Ax` gptq

using the method of undetermined coefficients.

Solution. We write gptq as follows:

gptq “

ˆ

2
0

˙

e´t `

ˆ

0
3

˙

t.

Observe that r “ ´1 is an eigenvalue of the coefficient matrix A, and thus we must include both
ate´t and be´t in the assumed solution. We assume that the solution has the form

xptq “ ate´t ` be´t ` ct` d,
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where a, b, c, and d are vectors to be determined. Substituting this expression into the equation
we get

´ate´t ` pa´ bqe´t ` c “ Aate´t `

„

Ab`

ˆ

2
0

˙

e´t `

„

Ac`

ˆ

0
3

˙

t`Ad.

Equating all the coefficient terms, we obtain that

Aa “ ´a, Ab “ a´ b´

ˆ

2
0

˙

, Ac “ ´

ˆ

0
3

˙

, Ad “ c.

We see that a is an eigenvector of A corresponding to the eigenvalue r “ ´1. Thus, we can
choose a to be

a “

ˆ

1
1

˙

.

Next, from the second equation, we can solve for b as follows:

pA` I2qb “

ˆ

´1 1
1 ´1

˙

b “

ˆ

1´ 2
1´ 0

˙

“

ˆ

´1
1

˙

.

Hence, we have

b “

ˆ

b1
b2

˙

where b1 ´ b2 “ 1.

If we set b1 “ k, then b2 “ k ´ 1, and we have

b “

ˆ

k
k ´ 1

˙

“ k

ˆ

1
1

˙

´

ˆ

0
1

˙

.

For the simplest choice, we can take k “ 0 and let b “ p0´ 1qT . Solving the rest of the equations
for c and d will obtain

c “

ˆ

1
2

˙

and d “ ´
1

3

ˆ

4
5

˙

.

Thus, we obtain a particular solution to the system

xptq “

ˆ

1
1

˙

te´t ´

ˆ

0
1

˙

e´t `

ˆ

1
2

˙

t´
1

3

ˆ

4
5

˙

.

Variation of Parameter We can also use the method of variation of parameter to solve the
system of equation

x1ptq “ Ax` gptq.

Here, A can be also depending on t. Assume that a fundamental matrix Ψptq is obtained for
the corresponding homogeneous system

x1ptq “ Axptq.

Then, we assume the solution to the nonhomogeneous system is

xptq “ Ψptquptq,

where uptq is a vector to be found. Substituting this expression of x to the nonhomogeneous
equation, we have

Ψ1ptquptq `Ψptqu1ptq “ AΨptquptq ` gptq.
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Note that Ψptq is a fundamental matrix, thus we have

Ψ1ptq “ AΨptq.

Hence, we have

Ψptqu1ptq “ gptq ùñ u1ptq “ Ψ´1ptqgptq ùñ uptq “

ż

Ψ´1ptqgptq dt` c.

Here, c is an arbitrary constant vector. As a result, the general solution x has the form

xptq “ Ψptqcptq `Ψptq

ż t

t0

Ψ´1psqgpsq ds.

Here, t0 is some given point of initial condition

xpt0q “ x0.

Using the initial condition we have

Ψptqc “ x0 ùñ c “ Ψ´1ptqx0.

Example 7.9.3. Find a particular solution to the given system of equations:

x1ptq “

ˆ

1 1
4 ´2

˙

x`

ˆ

e´2t

´2et

˙

using the method of variation of parameter.

Solution. We need first to compute a fundamental matrix for the associated homogeneous system

x1ptq “

ˆ

1 1
4 ´2

˙

x.

To this aim, we compute the eigenvalues of the matrix by expanding the following determinant

det

ˆ

1´ λ 1
4 ´2´ λ

˙

“ p1´ λqp´2´ λq ´ 4 “ λ2 ` λ´ 6 “ pλ´ 2qpλ` 3q.

It implies that the matrix has two eigenvalues λ1 “ 2 and λ2 “ ´3. For λ1 “ 2, one can find
the corresponding eigenvector vp1q such that

ˆ

´1 1
4 ´4

˙

vp1q “

ˆ

0
0

˙

thus we can choose

vp1q “

ˆ

1
1

˙

.

Similarly, for λ2 “ ´3, one can find the corresponding eigenvector vp2q such that

ˆ

4 1
4 1

˙

vp2q “

ˆ

0
0

˙

thus we can choose

vp2q “

ˆ

1
´4

˙

.
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Hence, a fundamental matrix Ψptq can be found as follows:

Ψptq “

ˆ

e2t e´3t

e2t ´4e´3t

˙

ùñ Ψ´1ptq “
1

´5e´t

ˆ

´4e´3t ´e´3t

´e2t e2t

˙

“
1

5

ˆ

4e´2t e´2t

e3t ´e3t

˙

.

Using the method of variation parameter, we can find out that

u1ptq “ Ψ´1ptqgptq “
1

5

ˆ

4e´2t e´2t

e3t ´e3t

˙ˆ

e´2t

´2et

˙

“
1

5

ˆ

4e´4t ´ 2e´t

et ` 2e4t

˙

.

Integrating each of the component in u1ptq, we get that

uptq “

ˆ

u1ptq
u2ptq

˙

,

where

u1ptq “
1

5

ż

r4e´4t ´ 2e´ts dt “ ´
1

5
e´4t `

2

5
e´t ` c1,

u2ptq “
1

5

ż

ret ` 2e4ts dt “
1

5
et `

1

10
e4t ` c2,

where c1 and c2 are arbitrary constants. As a result, we have

uptq “

ˆ

u1ptq
u2ptq

˙

“
1

5

ˆ

´e´4t ` 2e´t

et ` e4t{2

˙

`

ˆ

c1
c2

˙

.

Therefore, the general solution of the nonhomogeneous system reads

xptq “ Ψptquptq “ c1v
p1qe2t ` c2v

p2qe´3t `
1

5

ˆ

e2t e´3t

e2t ´4e´3t

˙ˆ

´e´4t ` 2e´t

et ` e4t{2

˙

“ c1v
p1qe2t ` c2v

p2qe´3t `
1

5

ˆ

´e´2t ` 2et ` e´2t ` et{2
´e´2t ` 2et ´ 4e´2t ´ 2et

˙

“ c1v
p1qe2t ` c2v

p2qe´3t `
1

2

ˆ

1
´2

˙

et.
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7.10 Exercises

1. Transform the given initial-value problem into an initial-value problem for two first-order
equations.

u2 `
1

4
u1 ` 4u “ 2 cosp3tq, up0q “ 1, u1p0q “ ´2.

2. Find all eigenvalues and eigenvectors of the given matrix

A “

ˆ

3 ´2
4 ´1

˙

.

3. Find the solution of the given initial-value problem.

(a) x1 “

ˆ

5 ´1
3 1

˙

x, xp0q “

ˆ

2
´1

˙

.

(b) x1 “

ˆ

´2 1
´5 4

˙

x, xp0q “

ˆ

1
3

˙

.

(c) x1 “

ˆ

1 ´5
1 ´3

˙

x, xp0q “

ˆ

1
1

˙

.

(d) x1 “

ˆ

1 ´4
4 ´7

˙

x, xp0q “

ˆ

3
2

˙

.

4. Find the fundamental matrix Φptq satisfying Φp0q “ I for the given first-order system:

x1 “

ˆ

´1 ´4
1 ´1

˙

x.

5. Find the general solution of the given system of equations.

(a) x1 “

ˆ

1 1
4 1

˙

x`

ˆ

2
´1

˙

et.

(b) x1 “

ˆ

2 ´5
1 ´2

˙

x`

ˆ

´ cos t
sin t

˙

.
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Exercise

There are 9 questions in this assignment. Answer and hand in your work for those are not
optional. No need to hand in your work for the optional problems. Please write down your
name and UIN. The deadline is 11:59 pm (CDT), Dec 7 2022. Problems 1. - 4. are for
Chapter 5 and Problems 5. - 9. are for Chapter 7.

1. Seek power series solutions of the given differential equation about the given point x0 and
find the recurrence relation that the coefficients satisfy.

(a) y2 ´ xy1 ´ y “ 0, x0 “ 0.

(b) 2y2 ` xy1 ` 3y “ 0, x0 “ 0.

Solution. In the following, we always assume that

ypxq “
8
ÿ

n“0

anx
n, y1pxq “

8
ÿ

n“0

pn` 1qan`1x
n, and y2pxq “

8
ÿ

n“0

pn` 2qpn` 1qan`2x
n.

(a) Plugging in the expressions of y, y1, and y2, we obtain

8
ÿ

n“0

rpn` 2qpn` 1qan`2 ´ ansx
n ´

8
ÿ

n“0

pn` 1qan`1x
n`1 “ 0.

In the first summation on the left-hand side, we pull the term with index n “ 0 out;
and shift the index of the second summation by 1, we get

2a2 ´ a0 `
8
ÿ

n“1

rpn` 2qpn` 1qan`2 ´ an ´ nansx
n “ 0.

The recursive relation is

a2 “
a0
2
, an`2 “

pn` 1qan
pn` 1qpn` 2q

“
an
n` 2

for n “ 1, 2, 3, ¨ ¨ ¨ .

(b) Plugging in the expressions of y, y1, and y2, we obtain

8
ÿ

n“0

r2pn` 2qpn` 1qan`2 ´ 3ansx
n `

8
ÿ

n“0

pn` 1qan`1x
n`1 “ 0.

Similar to (a), we then get

4a2 ´ 3a0 `
8
ÿ

n“1

r2pn` 2qpn` 1qan`2 ´ 3an ` nansx
n “ 0.

The recursive relation is

a2 “
3

4
a0, an`2 “

pn´ 3qan
2pn` 1qpn` 2q

for n “ 1, 2, 3, ¨ ¨ ¨ .

2. Determine y2p0q, y3p0q, and yp4qp0q, where ypxq is a solution of the given initial-value
problem

y2 ` xy1 ` y “ 0, yp0q “ 1, y1p0q “ 0.
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Solution. Substitute x “ 0 in the differential equation, we get

y2p0q ` yp0q “ 0 ùñ y2p0q “ ´1.

Differentiating the equation (with respect to x), we get

y3 ` xy2 ` 2y1 “ 0 ùñ y3p0q “ ´2y1p0q “ 0.

Differentiating the equation one more time, we get

yp4q ` xy3 ` px` 2qy2 “ 0 ùñ yp4qp0q “ ´2y2p0q “ ´2.

3. (Optional, no need to hand in) Determine a lower bound for the radius of convergence
of series solutions at each given point x0 for the given differential equation

px2 ´ 2x´ 3qy2 ` xy1 ` 4y “ 0,

where x0 “ 4, x0 “ ´4, and x0 “ 0.

4. (Optional, no need to hand in) Consider the initial-value problem

y2 ` psinxqy “ 0, yp0q “ 1, y1p0q “ 1.

Assume the solution is

ypxq “
8
ÿ

n“0

anx
n

at x “ 0. Find the first four nonzero terms in the series.

5. Transform the given initial-value problem into an initial-value problem for two first-order
equations.

u2 `
1

4
u1 ` 4u “ 2 cosp3tq, up0q “ 1, u1p0q “ ´2.

Solution. Introducing x1 “ u and x2 “ u1, we first get a relation between x1 and x2:

x11 “ x2.

The original differential equation can be expressed in terms of x1 and x2:

u2 `
1

4
u1 ` 4u “ 2 cosp3tq ùñ x12 “ ´4x1 ´

1

4
x2 ` 2 cosp3tq.

Hence, we obtain the (nonhomogeneous) system of equations for x1 and x2

x11 “ x2, x12 “ ´4x1 ´
1

4
x2 ` 2 cosp3tq

with initial conditions
x1p0q “ 1 and x2p0q “ ´2.

6. (Optional, no need to hand in) Find all eigenvalues and eigenvectors of the given
matrix

A “

ˆ

3 ´2
4 ´1

˙

.
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7. Find the solution of the given initial-value problem.

(a) x1 “

ˆ

5 ´1
3 1

˙

x, xp0q “

ˆ

2
´1

˙

.

Solution. We first find the eigenvalues and eigenvectors of the matrix. To this aim,
we expand the following determinant of λ:

ˇ

ˇ

ˇ

ˇ

5´ λ ´1
3 1´ λ

ˇ

ˇ

ˇ

ˇ

“ p5´ λqp1´ λq ` 3 “ λ2 ´ 6λ` 8 “ pλ´ 2qpλ´ 4q.

Hence, we obtain the eigenvalues of the matrix to be λ1 “ 2 and λ2 “ 4. For λ1 “ 2,
we want to find the eigenvector vp1q such that

ˆ

5´ λ1 ´1
3 1´ λ1

˙

vp1q “

ˆ

3 ´1
3 ´1

˙

vp1q “ 0.

Hence, we can choose

vp1q “

ˆ

1
3

˙

.

Similarly, for λ2 “ 4, we want to find the eigenvector vp2q such that

ˆ

5´ λ2 ´1
3 1´ λ2

˙

vp2q “

ˆ

1 ´1
3 ´3

˙

vp2q “ 0.

Hence, we can choose

vp2q “

ˆ

1
1

˙

.

Hence, we obtain two linearly independent solutions xp1q and xp2q to the system:

xp1q “

ˆ

1
3

˙

e2t and xp2q “

ˆ

1
1

˙

e4t.

The general solution of the system is x “ c1x
p1q`c2x

p2q, where c1 and c2 are arbitrary
and can be determined by the initial conditions. Making use of the initial conditions,
we have the equations for c1 and c2:

c1

ˆ

1
3

˙

` c2

ˆ

1
1

˙

“

ˆ

2
´1

˙

ðñ

"

c1 ` c2 “ 2,
3c1 ` c2 “ ´1.

Hence, we obtain that

c1 “ ´
3

2
and c2 “

7

2
.

The solution to the initial-value problem is

xptq “ ´
3

2
xp1q `

7

2
xp2q “

1

2

ˆ

´3e2t ` 7e4t

´9e2t ` 7e4t

˙

.

(b) (Optional, no need to hand in) x1 “

ˆ

´2 1
´5 4

˙

x, xp0q “

ˆ

1
3

˙

.

(c) x1 “

ˆ

1 ´5
1 ´3

˙

x, xp0q “

ˆ

1
1

˙

.



162 CHAPTER 7. SYSTEMS OF FIRST-ORDER LINEAR EQUATIONS

Solution. We first find the eigenvalues and eigenvectors of the matrix. To this aim,
we expand the following determinant of λ:

ˇ

ˇ

ˇ

ˇ

1´ λ ´5
1 ´3´ λ

ˇ

ˇ

ˇ

ˇ

“ p1´ λqp´3´ λq ` 5 “ λ2 ` 2λ` 2 “ pλ` 1q2 ` 1.

Hence, we obtain the eigenvalues of the matrix to be λ1 “ ´1`i and λ2 “ ´1´i. It is
a complex-conjugated case. The (real-valued) general solution involves trigonometric
terms. For λ1 “ ´1` i, we want to find the eigenvector vp1q such that

ˆ

1´ λ1 ´5
1 ´3´ λ1

˙

vp1q “

ˆ

2´ i ´5
1 ´2´ i

˙

vp1q “ 0.

Hence, we can choose

vp1q “

ˆ

2` i
1

˙

“

ˆ

2
1

˙

` i

ˆ

1
0

˙

.

Using the Euler’s formula, we have

vp1qeλ1t “ e´t
„ˆ

2
1

˙

` i

ˆ

1
0

˙

rcosptq ` i sinptqs .

We take uptq and vptq to be

uptq “ e´t
„ˆ

2
1

˙

cosptq ´

ˆ

1
0

˙

sinptq



,

vptq “ e´t
„ˆ

2
1

˙

sinptq `

ˆ

1
0

˙

cosptq



.

The general solution of the system is xptq “ c1uptq ` c2vptq, where c1 and c2 are
arbitrary and can be determined by the initial conditions. Making use of the initial
conditions, we have the equations for c1 and c2:

c1

ˆ

2
1

˙

` c2

ˆ

1
0

˙

“

ˆ

1
1

˙

ðñ

"

2c1 ` c2 “ 1,
c1 “ 1.

Hence, we obtain that

c1 “ 1 and c2 “ ´1.

The solution to the initial-value problem is

xptq “ uptq ´ vptq “ e´t
ˆ

cosptq ´ 3 sinptq
cosptq ´ sinptq

˙

.

(d) (Optional, no need to hand in) x1 “

ˆ

1 ´4
4 ´7

˙

x, xp0q “

ˆ

3
2

˙

.

8. Find the fundamental matrix Φptq satisfying Φp0q “ I for the given first-order system:

x1 “

ˆ

´1 ´4
1 ´1

˙

x.



7.10. EXERCISES 163

Solution. If we write Φptq to be

Φptq “
”

xp1q xp2q
ı

,

then xp1q and xp2q satisfy the system of equations with the following initial conditions

ˆ

1
0

˙

and

ˆ

0
1

˙

,

respectively. Next, we find the eigenvalues and eigenvectors of the matrix. To this aim,
we expand the following determinant of λ:

ˇ

ˇ

ˇ

ˇ

´1´ λ ´4
1 ´1´ λ

ˇ

ˇ

ˇ

ˇ

“ p1` λq2 ` 4.

Hence, we obtain the eigenvalues of the matrix to be λ1 “ ´1 ` 2i and λ2 “ ´1 ´ 2i.
It is a complex-conjugated case. The (real-valued) general solution involves trigonometric
terms. For λ1 “ ´1` 2i, we want to find the eigenvector vp1q such that

ˆ

´2i ´4
1 ´2i

˙

vp1q “ 0.

Hence, we can choose

vp1q “

ˆ

2i
1

˙

“

ˆ

0
1

˙

` i

ˆ

2
0

˙

.

Using the Euler’s formula, we have

vp1qeλ1t “ e´t
„ˆ

0
1

˙

` i

ˆ

2
0

˙

rcosp2tq ` i sinp2tqs .

We take uptq and vptq to be

uptq “ e´t
„ˆ

0
1

˙

cosp2tq ´

ˆ

2
0

˙

sinp2tq



,

vptq “ e´t
„ˆ

0
1

˙

sinp2tq `

ˆ

2
0

˙

cosp2tq



.

The general solution of the system is xptq “ c1uptq` c2vptq, where c1 and c2 are arbitrary
and can be determined by the initial conditions. We find xp1q first. Making use of the
initial conditions, we have the equations for c1 and c2:

c1

ˆ

0
1

˙

` c2

ˆ

2
0

˙

“

ˆ

1
0

˙

ðñ

"

2c2 “ 1,
c1 “ 0.

Hence, we obtain that

c1 “ 0 and c2 “
1

2
.

The solution to the initial-value problem is

xp1qptq “
1

2
vptq “ e´t

ˆ

cosp2tq
sinp2tq{2

˙

.
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Next, we find xp2q. Making use of the initial conditions, we have the equations for c1 and
c2:

c1

ˆ

0
1

˙

` c2

ˆ

2
0

˙

“

ˆ

0
1

˙

ðñ

"

2c2 “ 0,
c1 “ 1.

Hence, we obtain that
c1 “ 1 and c2 “ 0.

The solution to the initial-value problem is

xp2qptq “ uptq “ e´t
ˆ

´2 sinp2tq
cosp2tq

˙

.

As a result, we have

Φptq “ e´t
ˆ

cosp2tq ´2 sinp2tq
sinp2tq{2 cosp2tq

˙

.

9. Find the general solution of the given system of equations.

(a) x1 “

ˆ

1 1
4 1

˙

x`

ˆ

2
´1

˙

et.

(b) x1 “

ˆ

2 ´5
1 ´2

˙

x`

ˆ

´ cos t
sin t

˙

.

Solution. In the following, we use the method of variation of parameters to find the so-
lution. We first find a fundamental matrix Ψptq of the associated homogeneous system.
Then, we use the following formula to figure out uptq such that

xptq “ Ψptquptq, where uptq “

ż

Ψ´1ptqgptq dt` c,

where c is a constant vector that contains the arbitrary constants c1 and c2 in the formula
of general solution.

(a) We first find the eigenvalues and eigenvectors of the matrix. To this aim, we expand
the following determinant of λ:

ˇ

ˇ

ˇ

ˇ

1´ λ 1
4 1´ λ

ˇ

ˇ

ˇ

ˇ

“ p1´ λq2 ´ 4 “ λ2 ´ 2λ´ 3 “ pλ` 1qpλ´ 3q.

Hence, we obtain the eigenvalues of the matrix to be λ1 “ ´1 and λ2 “ 3. For
λ1 “ ´1, we want to find the eigenvector vp1q such that

ˆ

2 1
4 2

˙

vp1q “ 0.

Hence, we can choose

vp1q “

ˆ

1
´2

˙

.

Similarly, for λ2 “ 3, we want to find the eigenvector vp2q such that

ˆ

´2 1
4 ´2

˙

vp2q “ 0.
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Hence, we can choose

vp2q “

ˆ

1
2

˙

.

As a result, we obtain the fundamental matrix Ψptq as follows:

Ψptq “

ˆ

e´t e3t

´2e´t 2e3t

˙

ùñ Ψ´1ptq “
1

4e2t

ˆ

2e3t ´e3t

2e´t e´t

˙

“
1

4

ˆ

2et ´et

2e´3t e´3t

˙

.

Then, we can compute the vector uptq as follows:

uptq “

ż

Ψ´1ptqgptq dt`c “

ż

1

4

ˆ

2et ´et

2e´3t e´3t

˙ˆ

2
´1

˙

et dt`c “
1

4

ż
ˆ

5e2t

3e´2t

˙

dt`c.

Therefore, the vector uptq is as follows:

uptq “
1

8

ˆ

5e2t

´3e´2t

˙

` c.

The general solution is

xptq “ Ψptquptq “

ˆ

1{4
´2

˙

et ` c1

ˆ

1
´2

˙

e´t ` c2

ˆ

1
2

˙

e3t.

(b) We first find the eigenvalues and eigenvectors of the matrix. To this aim, we expand
the following determinant of λ:

ˇ

ˇ

ˇ

ˇ

2´ λ ´5
1 ´2´ λ

ˇ

ˇ

ˇ

ˇ

“ p2´ λqp´2´ λq ` 5 “ λ2 ` 1.

Hence, we obtain the eigenvalues of the matrix to be λ1 “ i and λ2 “ ´i. It is a
complex-conjugated case. The (real-valued) general solution involves trigonometric
terms. For λ1 “ i, we want to find the eigenvector vp1q such that

ˆ

2´ i ´5
1 ´2´ i

˙

vp1q “ 0.

Hence, we can choose

vp1q “

ˆ

2` i
1

˙

“

ˆ

2
1

˙

` i

ˆ

1
0

˙

.

Using the Euler’s formula, we have

vp1qeλ1t “

„ˆ

2
1

˙

` i

ˆ

1
0

˙

rcosptq ` i sinptqs .

Then, we obtain the fundamental matrix Ψptq to be

Ψptq “
´

xp1q xp2q
¯

,

where

xp1qptq “

„ˆ

2
1

˙

cosptq ´

ˆ

1
0

˙

sinptq



,

xp2qptq “

„ˆ

2
1

˙

sinptq `

ˆ

1
0

˙

cosptq



.
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As a result, we have

Ψptq “

ˆ

2 cosptq ´ sinptq 2 sinptq ` cosptq
cosptq sinptq

˙

ùñ Ψ´1ptq “
1

´1

ˆ

sinptq ´2 sinptq ´ cosptq
´ cosptq 2 cosptq ´ sinptq

˙

.

That is,

Ψ´1ptq “

ˆ

´ sinptq 2 sinptq ` cosptq
cosptq ´2 cosptq ` sinptq

˙

.

Then, we can compute the vector uptq as follows:

uptq “

ż

Ψ´1ptqgptq dt`c “

ż
ˆ

´ sinptq 2 sinptq ` cosptq
cosptq ´2 cosptq ` sinptq

˙ˆ

´ cosptq
sinptq

˙

dt`c.

That is,

uptq “

ż
ˆ

2 sinptq cosptq ` 2 sin2ptq
´ cos2ptq ´ 2 sinptq cosptq ` sin2ptq

˙

dt` c “

ż
ˆ

sinp2tq ` 2 sin2ptq
´ cosp2tq ´ sinp2tq

˙

dt` c

“

ż
ˆ

sinp2tq ` 1´ cosp2tq
´ cosp2tq ´ sinp2tq

˙

dt` c “
1

2

ˆ

´ cosp2tq ` 2t´ sinp2tq
´ sinp2tq ` cosp2tq

˙

` c.

The general solution is
xptq “ Ψptquptq.
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